Undergrad Definite Integral of a Rational Function

Click For Summary
SUMMARY

The discussion focuses on evaluating the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$ using advanced techniques such as contour integration and series expansion. It establishes that the integral can be computed through the series $$\sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n}$$ and confirms that $$\int_0^\infty \frac{1-x^2}{1+x^4} dx = 0$$. The discussion also highlights the relationship between the integrals and the use of the substitution $$y=1/x$$ for further evaluation.

PREREQUISITES
  • Understanding of contour integration techniques
  • Familiarity with series expansions and factorial notation
  • Knowledge of rational functions and their properties
  • Experience with definite integrals and improper integrals
NEXT STEPS
  • Study advanced contour integration methods in complex analysis
  • Explore series expansions involving double factorials
  • Learn about the properties of rational functions in calculus
  • Investigate the implications of integral transformations, such as the substitution method
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and the evaluation of definite integrals involving rational functions.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Evaluate the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$
 
Physics news on Phys.org
z^4=-1 has the solutions
z=e^{i\pi/4},e^{i3\pi/4},e^{-i3\pi/4},e^{-i\pi/4}
\int_0^\infty \frac{x^2+1}{x^4+1}dx=\frac{1}{2}\int_{-\infty}^\infty \frac{x^2+1}{x^4+1}dx
by complex integral along the real axis and upper semicircle contour
=i\pi [\ Res (\frac{z^2+1}{z^4+1},e^{i\pi/4})+ \ Res (\frac{z^2+1}{z^4+1},e^{i3\pi/4})]=\frac{\pi}{\sqrt{2}}

Another approach:
transforming x by
x=\tan\theta
The integral is
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}
where
\phi=2\theta
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...

Or not in series,
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=2\int_0^\infty \frac{dt}{2+t^2}=\sqrt{2}[\arctan \ s]^\infty_0=\frac{\pi}{\sqrt{2}}
where
t=\tan \phi
s=\frac{t}{\sqrt{2}}
 
Last edited:
anuttarasammyak said:
Another approach:
transforming x by
x=\tan\theta
The integral is
\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}
where
\phi=2\theta
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...
Using ##(2n)!! = 2n (2n-2) \cdots 2 = 2^n n!##,

\begin{align*}
\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n}
\end{align*}

We have

\begin{align*}
\frac{1}{\sqrt{x+1}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} x^n
\end{align*}

So that

\begin{align*}
\frac{1}{\sqrt{2}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} .
\end{align*}
 
Last edited:
  • Like
Likes anuttarasammyak
I think you can do it in the first quadrant as the limit as R \to \infty of <br /> \oint_C \frac{1 + z^2}{1 + z^4}\,dz = \underbrace{\int_0^R \frac{1 + x^2}{1 + x^4}\,dx}_{\mbox{real}} - i \underbrace{\int_0^R \frac{1 - y^2}{1 + y^4}\,dy}_{\mbox{real}} + \underbrace{\int_0^{\pi/2} \frac{1 + R^2e^{2it}}{1 + R^4e^{4it}}iRe^{it}\,dt}_{=O(R^{-1})} which reduces to <br /> \DeclareMathOperator*{\Res}{\operatorname{Res}}<br /> \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx = \operatorname{Re} \left(2\pi i \Res\limits_{z = e^{i\pi/4}} \frac{1 + z^2}{1 + z^4}\right).
 
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}Method #2:

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} dx & = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{x^2 + \dfrac{1}{x^2}} dx
\nonumber \\
& = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{\left( x - \dfrac{1}{x} \right)^2 + 2} dx
\nonumber \\
& = \int_0^\infty \dfrac{d \left( x - \dfrac{1}{x} \right)}{\left( x - \dfrac{1}{x} \right)^2 + 2}
\nonumber \\
& = \int_{-\infty}^\infty \dfrac{d u}{u^2 + 2}
\nonumber \\
& = \frac{1}{\sqrt{2}} \int_{-\infty}^\infty \dfrac{d u}{u^2 + 1}
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}Method #3

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \frac{1}{2} \int_0^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx + \frac{1}{2} \int_0^\infty \frac{1}{x^2 + \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{\left( x - \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{2}} dx
\end{align*}

Using ##u = x - \frac{1}{\sqrt{2}}##, the above becomes

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \int_{-\infty}^\infty \frac{1}{2 u^2 + 1} du
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}
 
  • Like
Likes dextercioby
julian said:
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}

In method #1, doing the contour integration directly also gets the value of <br /> \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.

Placing a branch cut along the positive real axis so that 0 \leq \arg z &lt; 2\pi, we can calculate <br /> \frac14\oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz = \frac{\pi i}2 \left( e^{-\frac34 \pi i} + e^{-\frac14 \pi i} \right) = \frac{\pi}{\sqrt 2} where C conists of the positive real axis (\arg z = 0), a large circle of radius R about the origin, the positive real axis (\arg z \to 2\pi^{-}) and a small circle of radius \epsilon about the origin. In the limit R \to \infty and \epsilon \to 0 the contributions from the circles vanish and we are left with \begin{split}<br /> \frac14 \oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz &amp;= <br /> \frac14\int_0^\infty \frac{u^{-3/4} + u^{-1/4}}{1 + u}\,du - \frac i4\int_0^\infty \frac{u^{-3/4} - u^{-1/4}}{1 + u}\,du \\<br /> &amp;= \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx - i \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx. \end{split}<br /> Taking real and imaginary parts gives the results.
 
pasmith said:
In method #1, doing the contour integration directly also gets the value of <br /> \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.
Yes, you get out the additional result:

\begin{align*}
\int_0^\infty \frac{1-x^2}{1+x^4} dx = 0
\end{align*}

You can see this also by doing ##y=1/x## in the following integral:

\begin{align*}
\int_0^\infty \frac{1}{1+x^4} dx = \int_0^\infty \frac{y^2}{1+y^4} dy
\end{align*}
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K