[itex]h(x)= \int_0^x (\int_0^uf(t)dt). du[/itex], then why is [itex]h'(x) = \int_0^uf(t)dt[/itex]? Shouldn't it be ##(adsbygoogle = window.adsbygoogle || []).push({});

h(x) - h(0)## in the first equation? where ##h(x)## is the antiderivative of [itex]\int_0^uf(t)dt[/itex]? But wait, isn't antiderivative of a function without limits on it? Like for [itex]\int_a^bf(x)dx[/itex] we would say, let ##F(x)## be the antiderivative of ##f(x)##, i.e. [itex]F(x) = ∫f(x)dx[/itex]. And then we apply limits on ##F(x)## do evaluate the definite integral. So what does ##h(x)## mean in the beginning? Does it mean that ##h(x)## is the antiderivative of [itex]\int_0^uf(t)dt[/itex], i.e. [itex]h(x) = ∫(\int_0^uf(t)dt).dx[/itex] and then we apply the limits 0 and x on it? Would [itex]\int_0^uf(t)dt[/itex] be a separate function and not just some single value?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Definite Integral of Definite Integral

Loading...

Similar Threads - Definite Integral Definite | Date |
---|---|

I Integrating scaled and translated indicator function | Nov 20, 2017 |

B Definite integrals with +ve and -ve values | Jun 10, 2017 |

I Taylor expansions and integration. | May 7, 2017 |

I Solving a definite integral by differentiation under the integral | Mar 23, 2017 |

I Question about Complex limits of definite integrals | Jan 30, 2017 |

**Physics Forums - The Fusion of Science and Community**