MHB Definite Integration: $$\int^{\frac{\sqrt{5}+1}{2}}_{1}$$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
The integral $$\int^{\frac{\sqrt{5}+1}{2}}_{1}\frac{x^2+1}{x^4-x^2+1}\ln\left(x-\frac{1}{x}+1\right)dx$$ presents challenges in evaluation, prompting discussions on suitable methods. Participants suggest exploring substitution techniques and integration by parts, while others mention numerical approximation as a potential approach. Some have attempted partial fraction decomposition to simplify the integrand. The complexity of the logarithmic term adds to the difficulty, leading to considerations of series expansion. Overall, the thread emphasizes the need for innovative strategies to tackle this integral effectively.
juantheron
Messages
243
Reaction score
1
Evaluation of $$\int^{\frac{\sqrt{5}+1}{2}}_{1}\frac{x^2+1}{x^4-x^2+1}\ln\left(x-\frac{1}{x}+1\right)dx$$
 
Physics news on Phys.org
What methods are expected to use ? what have you tried so far ?
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K