Definition of a function in NBG set theory

Click For Summary
Defining a function over all rings presents challenges in ZF set theory due to the inability to create the set of all rings, as the axiom of separation restricts the domain. This issue is addressed in NBG set theory, where class comprehensions allow for the creation of the class of all rings. In both ZF and NBG, functions are defined as relations between sets, and this definition extends to class functions in NBG. Thus, one can define a class function from the class of rings to the class of sets without encountering the limitations present in ZF. Overall, NBG set theory provides a framework that facilitates the definition of functions across broader domains.
echinuz
Messages
1
Reaction score
0
Hi,
I have a situation where I want to define a function over all possible rings. For example, I would like to define a function that accepts a ring as an input and returns its additive identity. However, this seems impossible to do in ZF set theory since we can not define the domain of this function. In other words, we can not generate the set {x:isring(x)} since the axiom of separation requires us to restrict x to some set S, {x \in S:isring(x)}. In this case, we would need S to be the set of all sets which is forbidden. However, this sort of action does seem permitted in NBG set theory since class comprehensions allow us to create the class of all rings {x:isring(x)}. Assuming this is correct, we return to our original problem which was to define a function whose input is a ring. What is a function is NBG set theory? In ZF set theory, we typically define a function as a relation between two sets that has certain properties. What is the analogy with classes? Is there a good reference for these sort of constructs?
 
Physics news on Phys.org
echinuz said:
Hi,
I have a situation where I want to define a function over all possible rings. For example, I would like to define a function that accepts a ring as an input and returns its additive identity. However, this seems impossible to do in ZF set theory since we can not define the domain of this function. In other words, we can not generate the set {x:isring(x)} since the axiom of separation requires us to restrict x to some set S, {x \in S:isring(x)}. In this case, we would need S to be the set of all sets which is forbidden. However, this sort of action does seem permitted in NBG set theory since class comprehensions allow us to create the class of all rings {x:isring(x)}. Assuming this is correct, we return to our original problem which was to define a function whose input is a ring. What is a function is NBG set theory? In ZF set theory, we typically define a function as a relation between two sets that has certain properties. What is the analogy with classes? Is there a good reference for these sort of constructs?
You can define a class function in ZFC. Since NBG is a conservative extension of ZFC, you will get the same results.

In your example, you just define a class function from the class of rings to the class of sets. Afaik, functions are defined the same way in ZFC and NBG.
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 54 ·
2
Replies
54
Views
6K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K