Graduate Definition of the Lie derivative

Click For Summary
The Lie derivative of a vector field Y with respect to another vector field X on a manifold M is defined using the limit involving the flow of X. The vector Y at the point φ_tx represents the tangent vector at that location, while φ_{t*}Y_x is the pushforward of the vector Y at point x along the flow to φ_tx. These two vectors, Y_{φ_tx} and φ_{t*}Y_x, are distinct; the former is the original vector at φ_tx, while the latter is derived from Y_x and moved along the flow. The pushforward operation effectively translates the vector from one point to another on the manifold, preserving its direction and magnitude relative to the flow. Understanding this distinction is crucial for interpreting the Lie derivative in the context of differential geometry.
spaghetti3451
Messages
1,311
Reaction score
31
Consider the Lie derivative of the vector field ##\bf{Y}## with respect to the vector field ##\bf{X}## on manifold ##M^{n}(x)## defined as

##\displaystyle{[\mathcal{L}_{\bf{X}}Y]_{x}:=\lim_{t\rightarrow 0} \frac{[{\bf{Y}}_{\phi_{t}x}-\phi_{t*}{\bf{Y}}_{x}]}{t}}##

Now, I understand that ##{\bf{Y}}_{\phi_{t}x}## is the tangent vector of the vector field ##\bf{Y}## at the point ##\phi_{t}x##, where the point ##\phi_{t}x## is obtained by starting at point ##x## at time ##0## and traversing along the orbit of ##x## to time ##t##.

But I don't understand how to interpret ##\phi_{t*}{\bf{Y}}_{x}##. Given the map ##\phi_{t}## which maps points ##x## in ##M^{n}## to points ##\phi_{t}(x)## in ##M^{n}## along the orbit of ##x## parameterised by time ##t##, we can define the differential ##\phi_{t*}## that maps the tangent vector of the vector field ##Y## at ##x## to some tangent vector at the point ##\phi_{t}x##. Now, there is only one tangent vector of the vector field ##\bf{Y}## at the point ##\phi_{t}x##, and this tangent vector is the vector ##{\bf{Y}}_{\phi_{t}x}##. This seems to suggest that ##{\bf{Y}}_{\phi_{t}x}## and ##\phi_{t*}{\bf{Y}}_{x}##.

What am I missing?
 
Physics news on Phys.org
Not sure what you mean by the phrase "tangent vector of the vector field". But anyway:

##Y_{\phi_t x}## is the vector that lives at ##\phi_t x##, whereas ##\phi_{t*} Y_x## is the vector that lives at ##x##, pushed forward by the flow ##\phi## to the point ##\phi_t x##.

If you imagine vectors as tiny arrows living on your manifold, then the pushforward ##\phi_{t*}## acts by pushing both the head and the tail of the little arrow along the flow lines. So, the little arrow ##\phi_{t*} Y_x## is completely defined in terms of the little arrow ##Y_x## that lives at ##x##, given the flow ##\phi_t##.

In contrast, the little arrow ##Y_{\phi_t x}## is the one that was already sitting at ##\phi_t x## to begin with, and hasn't been pushed along the flow.
 
  • Like
Likes spaghetti3451
Just to put mathematics on what Ben said: ##\phi_t## defines a function from the manifold to itself. Any such function defines a map from the tangent space at ##x## to the tangent space at ##\phi_t(x)##. Taking ##X \in T_x M##, ##\phi_{t*}X## is defined by ##\phi_{t*}X[f] = X[f \circ \phi_t]## (note that ##f(\phi_t(x))## is a function on the manifold as long as ##f## is).
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
804
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K