Hello,(adsbygoogle = window.adsbygoogle || []).push({});

This is a question on perturbation theory - which I am trying to apply to the following example.

1. The problem statement, all variables and given/known data

The two-dimensional infinitely deep square well (with sides at x=0,a; y=0,a) is perturbed by the potential V(x)=[tex]\alpha(x^{2}+y^{2})[/tex]. What is the first-order correction to the energy of the first excited states (that is, those with quantum numbers (1,2), (2,1))?

3. The attempt at a solution

I have calculated [tex]\langle\left\right 1,2^{(0)}|\widehat{V}|2,1^{(0)} \rangle[/tex]. In Maple this is:

> value( Doubleint( (2/a)*sin(Pi*x/a)*sin(2*Pi*y/a)*(x^2+y^2)*(2/a)*sin(2*Pi*x/a)*sin(Pi*y/a) ,x=0...a,y=0...a) );

which is zero.

I have calculated

[tex]\langle\left\right 1,2^{(0)}|\widehat{V}|1,2^{(0)} \rangle[/tex]. In Maple this is:

value( alpha*Doubleint(4*sin(Pi*x/a)*sin(2*Pi*y/a)*(x^2+y^2)*sin(Pi*x/a)*sin(2*Pi*y/a),x=0..a,y=0..a) )

which is

[tex]\alpha a^{2}\left( \frac{16\pi^{2}-15}{24 \pi^{2}} \right)[/tex]

Am I to conclude from this that the perturbation, in *this* case, does not lift the degeneracy, and that the first order correction to the energy is the same for both states, and is given above?

I had expected to form a matrix, work out its eigenvalues and eigenvectors, use that to construct a new basis etc. But the matrix I would form from the above would already be diagonalised, with a repeated eigenvalue of 1.

I'd appreciate some speedy words of wisdom :-)

Thanks folks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Degenerate Perturbation Theory Question

**Physics Forums | Science Articles, Homework Help, Discussion**