I Demonstration of inequality between 2 variance expressions

fab13
Messages
300
Reaction score
7
TL;DR Summary
In an astrophysics context, I would like to prove than ##\sigma_{o, 1}^{2}<\sigma_{o, 2}^{2}## but I have difficulties to derive this inequality.
Just to remind, ##C_\ell## is the variance of random variables ##a_{\ell m}## following a Gaussian PDF (in spherical harmonics of Legendre) :

##C_{\ell}=\left\langle a_{l m}^{2}\right\rangle=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m}^{2}=\operatorname{Var}\left(a_{l m}\right)##

1) Second observable :
##
\sigma_{D, 2}^{2}=\dfrac{2 \sum_{\ell_{\min }}^{\ell_{\max }}(2 \ell+1)}{\left(f_{s k y} N_{p}^{2}\right)}
##
so :
##
\sigma_{o, 2}^{2}=\dfrac{\sigma_{D, 2}^{2}}{\left(\sum_{\ell_{\min }}^{\ell_{\max }}(2 \ell+1) C_{\ell}\right)^{2}}
##

2) First observable :
##
\sigma_{D, 1}^{2}=\sum_{\ell_{\min }}^{\ell_{\max }} \dfrac{2}{(2 \ell+1)\left(f_{s k y} N_{p}^{2}\right)}
##
so :
##
\sigma_{o, 1}^{2}=\dfrac{\sigma_{D, 1}^{2}}{\left(\sum_{\ell_{\min }}^{\ell_{\max }} C_{\ell}\right)^{2}}
##
3) Goal :
I would like to prove than ##\sigma_{o, 1}^{2}<\sigma_{o, 2}^{2}## but I have difficulties to derive this inequality.
 
Last edited:
Physics news on Phys.org
Things are progressing in my demonstration.

All I need to do now is to prove the following inequality, by taking ## X = 2 \ell + 1 ## and ## Y = C_\ell ##:

## \big(\sum Y \big)^{2} > \sum X^{- 1} \sum XY^{2}\quad (1) ##

with ## X ## and ## Y ## which are functions of ## \ell ## (see above) and ## X ## is increasing while ## Y ## is assumed to be decreasing.

The sum ## \sum ## is actually done over ## \sum_{\ell =\ell_{min}}^{\ell_{max}} ##, it was just to make it more readable than I did not write in ##(1) ##.

Any suggestion, track or help is welcome.

Best regards
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top