Density of a sphere that has a cavity

AI Thread Summary
The discussion centers on calculating the density of a sphere with a cavity that floats on water, using the principle that the buoyant force equals the weight of the displaced fluid. It establishes that the volume of displaced water is five times the true volume of the sphere, leading to the conclusion that the volume of the cavity is 80% of the apparent volume when the sphere is fully submerged. Participants clarify that the apparent volume should equal the volume of displaced water to minimize the cavity volume. Additionally, there is a correction regarding the density of iron used in calculations, emphasizing the importance of accurate material properties. The conversation concludes with a focus on the assumptions made in the calculations.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
At least what percentage of an iron sphere must have cavity, so that the sphere floats on water?
##(\rho _{iron}=5 \times 10^3 kg/m^3 , \rho _{water}=10^3 kg/m^3). ##
Relevant Equations
##Density=mass/Volume.##
The sphere floats on water so we should have: ##F_b=F_g##
The buoyant force is equal to the weight of the displaced fluid, so : ##\rho _wV_wg=\rho _sV_sg##
(w: water, s: sphere)
From last equation we have : ##V_w=\frac {\rho _s}{\rho _w} V_s \rightarrow V_w=5 V_s ##
The volume of displaced water(##V_w##) is equal to the apparent volume of the part of sphere that is inside the water( ##V_w=## Apparent volume of the part of sphere that is inside the water).
I also know that ##V_s## is the true volume of sphere(##V_s=## True volume of sphere).

Volume of cavity(##V_{cavity}##) = Apparent volume of sphere(##V_{apparent}##) ##-## True volume of sphere(##V_{s}##) ##\rightarrow##
##V_{cavity}=V_{apparent}-V_s##
If we put ##V_{apparent}=V_w## then we have: ##V_{cavity}=V_{w}-V_s=\frac 4 5 V_w=\frac 4 5 V_{apparent}##
So the answer is: ##80##%

I think ##V_{apparent}## should be equal to ##V_w##(Apparent volume of the part of sphere that is inside the water) because the question asks for the minimum cavity volume. And the volume of the cavity is minimized when the sphere is completely immersed in water because the more the volume of the cavity decreases, the more water is moved to balance the forces.

Am I right?!
 
Physics news on Phys.org
Alternatively:

$$F_b = F_w$$

$$ \rho_{water} \cancel{g} V \llap{-}_s = \rho_{iron} \left( V \llap{-}_s - V \llap{-}_c \right) \cancel{g} $$

$$ \implies \frac{ V \llap{-}_c }{V \llap{-}_s} = \frac{\rho_{iron} - \rho_{water}}{\rho_{iron}} = \frac{4}{5}$$
 
FYI, you are not using the commonly accepted density of iron.
 
  • Like
Likes MatinSAR, Lnewqban, nasu and 1 other person
Frabjous said:
FYI, you are not using the commonly accepted density of iron.
This assumption was stated in the question(not in my answer). And yes, it is not true. Thank you.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top