Hey, I'm a first year Astrophysics student, and in revising the Schwarzchild radius, I wanted to derive it and so I started by deriving the escape velocity from first principles, then rearrange to get the Schwarzchild Radius. Child's play, really.(adsbygoogle = window.adsbygoogle || []).push({});

However, depending from where you come from, either from energy or rotational motion, you end up being a factor of [tex]\sqrt{2}[/tex] out:

First Derivation, from Newtonian Mechanics

I am ignoring vector notation for speed

[tex]F = \frac{GMm}{r^{2}} = ma[/tex]

[tex]a = \frac{GM}{r^{2}}[/tex]

However,

[tex]a = \frac{v^{2}}{r}[/tex]

Therefore,

[tex]\frac{v^{2}}{r} = \frac{GM}{r^{2}}[/tex]

Rearranging for v gives

[tex]v = \sqrt{\frac{GM}{r}}[/tex]

Second Derivation, from Energy

We can assume that by units,

[tex]E = \frac{1}{2}mv^{2} = \frac{GMm}{r}[/tex]

[tex]E = \frac{1}{2}v^{2} = \frac{GM}{r}[/tex]

[tex]E = v^{2} = \frac{2GM}{r}[/tex]

[tex]v = \sqrt{\frac{2GM}{r}}[/tex]

Are my mathematics skills not up to scratch, or is it that for two equally valid derivations, we get two equally valid equations, that mean the same thing, but are not equal to one another?

**Physics Forums - The Fusion of Science and Community**

# Derivation of Escape Velocity Inconsistency

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Derivation of Escape Velocity Inconsistency

Loading...

**Physics Forums - The Fusion of Science and Community**