komodekork
- 17
- 0
In thermodynamics one of the maxwell relations is:
<br /> \left( \frac{\partial S}{\partial V} \right)_T = \left( \frac{\partial P}{\partial T} \right)_V<br />
When I try to derive it from dU = TdS - PdV i get:
<br /> T = \left( \frac{\partial U}{\partial S} \right)_V<br />
<br /> P = -\left( \frac{\partial U}{\partial V} \right)_S<br />
<br /> \left( \frac{\partial T}{\partial V} \right)_S = \frac{\partial}{\partial V}\left( \frac{\partial U}{\partial S} \right)_V = \frac{\partial}{\partial S}\left( \frac{\partial U}{\partial V}\right)_S = -\left( \frac{\partial P}{\partial S} \right)_V<br />
I then multiply with \frac{\partial S}{\partial T},
<br /> \frac{\partial S}{\partial T} \left( \frac{\partial T}{\partial V} \right)_S = \frac{\partial S}{\partial T} \left( -\frac{\partial P}{\partial S} \right)_V<br />
<br /> \left( \frac{\partial S}{\partial V} \right)_S = -\left( \frac{\partial P}{\partial T} \right)_V<br />
So, what am I doing wrong?
<br /> \left( \frac{\partial S}{\partial V} \right)_T = \left( \frac{\partial P}{\partial T} \right)_V<br />
When I try to derive it from dU = TdS - PdV i get:
<br /> T = \left( \frac{\partial U}{\partial S} \right)_V<br />
<br /> P = -\left( \frac{\partial U}{\partial V} \right)_S<br />
<br /> \left( \frac{\partial T}{\partial V} \right)_S = \frac{\partial}{\partial V}\left( \frac{\partial U}{\partial S} \right)_V = \frac{\partial}{\partial S}\left( \frac{\partial U}{\partial V}\right)_S = -\left( \frac{\partial P}{\partial S} \right)_V<br />
I then multiply with \frac{\partial S}{\partial T},
<br /> \frac{\partial S}{\partial T} \left( \frac{\partial T}{\partial V} \right)_S = \frac{\partial S}{\partial T} \left( -\frac{\partial P}{\partial S} \right)_V<br />
<br /> \left( \frac{\partial S}{\partial V} \right)_S = -\left( \frac{\partial P}{\partial T} \right)_V<br />
So, what am I doing wrong?