Derivation of the Helmholtz equation

Click For Summary
SUMMARY

The Helmholtz equation is derived as the time-independent form of the wave equation, specifically from the Fourier transform of a differentiable function. The derivation involves recognizing the differentiation property of the Fourier transform, leading to the equation \((\vec{k})^2 f(\vec{x}) = -\frac{1}{(2 \pi)^2} (\partial_{\vec{x}})^2 f(\vec{x})\). This establishes the Helmholtz equation as a member of a larger set of Helmholtz-type equations. The discussion also highlights the importance of the phase velocity \(c\) in the wave equation and the conventions used in Fourier transforms.

PREREQUISITES
  • Fourier Transform properties
  • Wave Equation fundamentals
  • Partial Differential Equations (PDEs)
  • Complex Analysis in physics
NEXT STEPS
  • Study the derivation of the wave equation from first principles
  • Explore the application of Fourier Transforms in solving PDEs
  • Learn about the physical significance of the Helmholtz equation in wave phenomena
  • Investigate the role of phase velocity in wave propagation
USEFUL FOR

Physicists, mathematicians, and engineers interested in wave mechanics, particularly those studying the mathematical foundations of wave equations and their applications in various fields such as acoustics, optics, and electromagnetism.

redtree
Messages
335
Reaction score
15
TL;DR
Derivation from the Fourier transform
I am trying to understand the Helmholtz equation, where the Helmholtz equation can be considered as the time-independent form of the wave equation. It seems to me that the Helmholtz equation can be derived from the Fourier transform, such that it is part of a larger set of equations of varying order.
Given a differentiable function ##f(\vec{x})##, I note the differentiation property of the Fourier transform,

\begin{equation}

\begin{split}

\partial_{\vec{x}} f(\vec{x}) &= \partial_{\vec{x}} \int_{\mathbb{R}} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}

\\

&= \int_{\mathbb{R}} \partial_{\vec{x}} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}

\\

&= \int_{\mathbb{R}} 2 \pi i \vec{k} e^{2 \pi i \vec{k} \cdot \vec{x}} \hat{f}(\vec{k}) d\vec{k}

\\

&= \mathscr{F}^{-1} \left[2 \pi i \vec{k} \hat{f}(\vec{k}) \right]

\end{split}

\end{equation}
The converse is also true, such that

\begin{equation}

\begin{split}

2 \pi i \vec{k} \hat{f}(\vec{k}) &= \mathscr{F}\left[\partial_{\vec{x}} f(\vec{x}) \right]

\\

&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( \partial_{\vec{x}} f(\vec{x}) \bigg) d\vec{x}

\end{split}

\end{equation}
Regarding ##2 \pi i \vec{k} \hat{f}(\vec{k})##, I also note the following:

\begin{equation}

\begin{split}

2 \pi i \vec{k} \hat{f}(\vec{k}) &= 2 \pi i \vec{k} \mathscr{F}\left[f(\vec{x}) \right]

\\

&= 2 \pi i \vec{k} \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} f(\vec{x}) d\vec{x}

\\

&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( 2 \pi i \vec{k} f(\vec{x}) \bigg) d\vec{x}

\end{split}

\end{equation}Combining these last two equations,

\begin{equation}

\begin{split}

\int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( \partial_{\vec{x}} f(\vec{x}) \bigg) d\vec{x}&= \int_{\mathbb{R}} e^{-2 \pi i \vec{k} \cdot \vec{x}} \bigg( 2 \pi i \vec{k} f(\vec{x}) \bigg) d\vec{x}

\end{split}

\end{equation}

which simplifies to

\begin{equation}

\begin{split}

\vec{k} f(\vec{x}) &= -\frac{i}{(2 \pi) } \partial_{\vec{x}} f(\vec{x})

\end{split}

\end{equation}
This same holds true for any ##n##-th derivative, such that

\begin{equation}

\begin{split}

\big(\vec{k} \big)^n f(\vec{x}) &= \left(-\frac{i}{2 \pi} \right)^n \big(\partial_{\vec{x}} \big)^n f(\vec{x})

\end{split}

\end{equation}
Setting ##n=2## produces the Helmholtz equation

\begin{equation}

\begin{split}

\big( \vec{k} \big)^2 f(\vec{x}) &= -\frac{1}{(2 \pi)^2} \big( \partial_{\vec{x}} \big)^2 f(\vec{x})

\end{split}

\end{equation}

which would make the Helmholtz equation the member of order ##n=2## of a larger set of Helmholtz-type equations
 
Physics news on Phys.org
That's a bit complicated. Just start from the wave equation for some field ##\Phi(t,\vec{x})##
$$\left (\frac{1}{c^2} \partial_t^2 - \Delta \right) \Phi(t,\vec{x})=0.$$
Here ##c## is the phase velocity of the waves.

Now we express the field as a Fourier integral with respect to time. Using the HEP physicists convention concerning the factors ##2 \pi## and the sign in the exponential this reads
$$\Phi(t,\vec{x})=\int_{\mathbb{R}} \mathrm{d} \omega \frac{1}{2 \pi} \tilde{\Phi}(\omega,\vec{x}) \exp(-\mathrm{i} \omega t) \; \Leftrightarrow \; \tilde{\Phi}(\omega,\vec{x}) = \int_{\mathbb{R}} \mathrm{d} t \tilde{\Phi}(\omega) \exp(+\mathrm{i} \omega t).$$
Now plug the first form of the Fourier transformation into the wave equation (just assuming you can integrate under the integral)
$$\left (\frac{1}{c^2} \partial_t^2 - \Delta \right) \Phi(t,\vec{x})=\int_{\mathbb{R}} \mathrm{d} \omega \frac{1}{2 \pi} (-k^2-\Delta) \tilde{\phi}(\omega,\vec{x})=0 \; \Rightarrow \; (k^2+\Delta) \tilde{\Phi}(\omega,\vec{x})=0.$$
Here ##k=\omega/c##, and that's the Helmholtz equation.
 
  • Like
Likes   Reactions: Delta2 and ergospherical
I rewrite the derivation you cite in slightly different notation as follows:

\begin{equation}

\begin{split}

\Phi(x_0,\vec{x}_3) &= \int_{\mathbb{R}} \hat{\phi}(k_0,\vec{x}_3) e^{- 2 \pi i k_0 x_0} dk_0

\end{split}

\end{equation}

where ##\vec{x}_4 = [x_0, x_1, x_2, x_3] = [x_0, \vec{x}_3]## and ##\vec{k}_4 = [k_0, k_1, k_2, k_3] = [k_0, \vec{k}_3]##
Given the wave equation:

\begin{equation}

\begin{split}

\bigg(\partial_{x_0}^2 - \partial_{\vec{x}_3}^2 \bigg) \Phi(x_0,\vec{x}_3) &= 0

\end{split}

\end{equation}

where ##\partial_{x_0} = \partial_t## and ##\partial_{\vec{x}_3}^2 = \Delta##
Combining the two equations

\begin{equation}

\begin{split}

\bigg(\partial_{x_0}^2 - \partial_{\vec{x}_3}^2 \bigg) \Phi(x_0,\vec{x}_3) &= \bigg(\partial_{x_0}^2 - \partial_{\vec{x}_3}^2 \bigg) \int_{\mathbb{R}} \hat{\phi}(k_0,\vec{x}_3) e^{- 2 \pi i k_0 x_0} dk_0

\\

&= \bigg(\left(2 \pi k_0\right)^2 - \partial_{\vec{x}_3}^2 \bigg) \hat{\Phi}(k_0,\vec{x}_3)

\\

&= 0

\end{split}

\end{equation}

which I summarize:

\begin{equation}

\begin{split}

\bigg(\left(2 \pi k_0\right)^2 - \partial_{\vec{x}_3}^2 \bigg) \hat{\Phi}(k_0,\vec{x}_3) &= 0

\end{split}

\end{equation}
Comparing this to the equation I derived (in similar notation)

\begin{equation}

\begin{split}

\bigg( \left(2 \pi \vec{k}_3\right)^2 - \partial_{\vec{x}_3}^2 \bigg) \Phi(\vec{x}_3) &= 0

\end{split}

\end{equation}
Thus, the equation I derived above is different from the Helmholtz equation. I get it. Thanks. Is there a name for the equation I derived. It seems correct. I don't see a mistake in its derivation. Am I missing something?
 
You forget the factor ##\mathrm{i}^2=-1## from the two time-derivatives! BTW it's very complicated to introduce the ##2 \pi## in the exponent and working with ##\nu## instead of ##\omega##. I've seen only one textbook (Weizel, Lehrbuch der Theoretischen Physik, an otherwise excellent textbook, but as far as I know not available in English), where this is done, and you suffer from a lot of factors ##2 \pi##.
 
vanhees71 said:
That's a bit complicated. Just start from the wave equation for some field ##\Phi(t,\vec{x})##
$$\left (\frac{1}{c^2} \partial_t^2 - \Delta \right) \Phi(t,\vec{x})=0.$$
Here ##c## is the phase velocity of the waves.

Now we express the field as a Fourier integral with respect to time. Using the HEP physicists convention concerning the factors ##2 \pi## and the sign in the exponential this reads
$$\Phi(t,\vec{x})=\int_{\mathbb{R}} \mathrm{d} \omega \frac{1}{2 \pi} \tilde{\Phi}(\omega,\vec{x}) \exp(-\mathrm{i} \omega t) \; \Leftrightarrow \; \tilde{\Phi}(\omega,\vec{x}) = \int_{\mathbb{R}} \mathrm{d} t \tilde{\Phi}(\omega) \exp(+\mathrm{i} \omega t).$$
Now plug the first form of the Fourier transformation into the wave equation (just assuming you can integrate under the integral)
$$\left (\frac{1}{c^2} \partial_t^2 - \Delta \right) \Phi(t,\vec{x})=\int_{\mathbb{R}} \mathrm{d} \omega \frac{1}{2 \pi} (-k^2-\Delta) \tilde{\phi}(\omega,\vec{x})=0 \; \Rightarrow \; (k^2+\Delta) \tilde{\Phi}(\omega,\vec{x})=0.$$
Here ##k=\omega/c##, and that's the Helmholtz equation.
vanhees71 do you mind going through all the relevant steps after plugging in the first form of the Fourier transformation into the wave equation? I don't understand how to reach the final form of the Helmholtz equation. Your help would be greatly appreciated.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K