Mike400
- 59
- 6
I get itCharles Link said:I am a little puzzled by the diagram of post 1. The region where ## \vec{M} ## is non-zero is presumably the region below the paraboloid, and you want to find the contribution to the integral at a point ## \vec{r} ## that lies on the paraboloid. The integral over ## R ## is ok, but the ## \vec{r} ## in the diagram needs to be ## \vec{r}' ##, and the ## r ## in the denominator is ## r=|\vec{r}-\vec{r}'| ##. This ## r ## is really a poor choice of letters, and perhaps should be called letter ## s ## . It's very clumsy to work with these complicated surface integral formulas and prove anything meaningful. It's much easier to simplify what's going on, and to prove things for the simplified case.