Derived metrics on surfaces of positive curvature

Click For Summary
SUMMARY

This discussion focuses on deriving new metrics from closed surfaces of positive Gauss curvature embedded in R3. Participants explore the computation of Gauss curvature for these new metrics, the conditions under which the surfaces can remain embedded in R3, and the implications of choosing orthonormal eigenvectors of the shape operator. The consensus is that declaring these eigenvectors as unit length yields a new Riemannian metric, which retains positive Gauss curvature if the original surface is sufficiently close to a sphere.

PREREQUISITES
  • Understanding of Gauss curvature and its significance in differential geometry.
  • Familiarity with shape operators and their eigenvalues/eigenvectors.
  • Knowledge of Riemannian metrics and their properties.
  • Basic concepts of convex bodies and Minkowski sums in R3.
NEXT STEPS
  • Study the computation of Gauss curvature for derived metrics using principal coordinates.
  • Investigate the properties of Riemannian metrics on surfaces with isolated umbilics.
  • Explore approximation theorems related to spheroids and their curvature behavior.
  • Examine the implications of the Minkowski sum in the context of smooth convex bodies in R3.
USEFUL FOR

Mathematicians, differential geometers, and researchers interested in the properties of surfaces with positive Gauss curvature and their applications in geometry and topology.

lavinia
Science Advisor
Messages
3,380
Reaction score
755
TL;DR
Using the principal curvatures of an embedded surface of positive Gauss curvature, what is the curvature of the derived metric?
Start with a closed surface of positive Gauss curvature embedded smoothly in ##R^3##. At each point, choose two independent eigenvectors of the shape operator whose lengths are the corresponding principal curvatures. By declaring them to be orthonormal one gets - I think - a new metric on the surface.

- How does one compute the Gauss curvature of this new metric?
- Can the surface also be embedded in ##R^3##?
- Does this metric also have positive Gauss curvature? If so repeat the process and calculate the Gauss curvature again. In case one gets an infinite sequence of surfaces of positive Gauss curvature what is the limiting metric?
- Does one always get a limiting metric?
 
Last edited:
Physics news on Phys.org
I'm a little confused by the question. You can rescale eigenvectors to have unit length, so you can always pick an orthonormal basis of eigenvectors for the shape operator.

Do you have a way of picking 'favored' eigenvectors that you want to declare as having unit length for your new metric?
 
Infrared said:
I'm a little confused by the question. You can rescale eigenvectors to have unit length, so you can always pick an orthonormal basis of eigenvectors for the shape operator.

Do you have a way of picking 'favored' eigenvectors that you want to declare as having unit length for your new metric?

Take the vectors that are of length the principal curvatures and redefine the metric so that these vectors are length 1.
 
"Start with a closed surface of positive Gauss curvature embedded smoothly in R3. The eigenvectors of the shape operator are an orthogonal basis for the tangent plane at every point but they may not be of unit length. By declaring them to be orthonormal one gets - I think - a new metric on the surface."

How does this work? Eigenvectors of a linear operator don't usually come with a natural length, do they? And of course at an umbilic point — where the principal curvatures are equal — the choice of orthogonal directions would be arbitrary (not that this is important — it isn't).

(
But the idea of a closed Coo surface in R3 of positive Gaussian curvature everywhere is a beautiful thing. If we also consider its interior, this will be a convex body in R3 with a smooth boundary. The Minkowski sum of two smoth convex bodies is also a smooth convex body: By definition, the Minkowski sum is

B1 + B 2 = {v + w ∈ R3 | v ∈ B1 and w ∈ B2}.

So the set of such convex bodies forms a commutative monoid https://en.wikipedia.org/wiki/Monoid#Commutative_monoid.

Each such convex body B has a unique center of gravity or centroid. And at least 4 double normals. (A double normal is a chord, a line segment whose endpoints lie on the boundary ∂B of B, such that it is perpendicular to the tangent planes of ∂B at each of its endpoints.)
)
 
zinq said:
"Start with a closed surface of positive Gauss curvature embedded smoothly in R3. The eigenvectors of the shape operator are an orthogonal basis for the tangent plane at every point but they may not be of unit length. By declaring them to be orthonormal one gets - I think - a new metric on the surface."

How does this work? Eigenvectors of a linear operator don't usually come with a natural length, do they? And of course at an umbilic point — where the principal curvatures are equal — the choice of orthogonal directions would be arbitrary (not that this is important — it isn't).

(
But the idea of a closed Coo surface in R3 of positive Gaussian curvature everywhere is a beautiful thing. If we also consider its interior, this will be a convex body in R3 with a smooth boundary. The Minkowski sum of two smoth convex bodies is also a smooth convex body: By definition, the Minkowski sum is

B1 + B 2 = {v + w ∈ R3 | v ∈ B1 and w ∈ B2}.

So the set of such convex bodies forms a commutative monoid https://en.wikipedia.org/wiki/Monoid#Commutative_monoid.

Each such convex body B has a unique center of gravity or centroid. And at least 4 double normals. (A double normal is a chord, a line segment whose endpoints lie on the boundary ∂B of B, such that it is perpendicular to the tangent planes of ∂B at each of its endpoints.)
)

The principal curvatures are the eigenvalues and the principal directions are the eigen vectors. One gets two orthogonal vectors by multiplying orthonormal eigenvectors by their corresponding principal curvatures. Declare these two vectors to be orthonormal and this gives a new metric at that point. In the case of an umbilic there is no change of metric.

For instance for the sphere there is no change of metric anywhere. For an ellipsoid there is no change of metric at its four umbilics. Across the whole surface one gets a new Riemannian metric. It is clear intuitively I think that if the surface starts out to be close enough to a sphere then the new metric is still of positive Gauss curvature.
 
Last edited:
This seems like an fruitful thread. One thought might be to write out the equations for the Gauss curvature of the derived metric using principal coordinates on surfaces with isolated umbilics. As an experiment one might try the simple case of a spheroid - an ellipsoid of revolution - since the curvature will be constant in one of the principal directions. There might be some approximation theorems here which say that simple examples like this can be used to approximate the general case.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K