Deriving conjugate momenta from the Einstein-Hilbert density

Click For Summary
SUMMARY

This discussion focuses on deriving the conjugate momenta ##\pi^{ij}## from the Einstein-Hilbert density ##\mathfrak{L} = (4)R \sqrt{-^{(4)}g}##. The solution utilizes equations from Golovnev's ArXiv paper, specifically equations (3), (11), and (13). The final expression for ##\pi^{ij}## is derived as ##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}##, confirming the relationship between the conjugate momenta and the geometry of spacetime.

PREREQUISITES
  • Understanding of General Relativity concepts
  • Familiarity with the Einstein-Hilbert action
  • Knowledge of differential geometry and tensor calculus
  • Experience with ArXiv papers, specifically Golovnev's work
NEXT STEPS
  • Study Golovnev's ArXiv paper for deeper insights into the derivations presented
  • Learn about the Einstein-Hilbert action and its implications in General Relativity
  • Explore the mathematical foundations of conjugate momenta in field theories
  • Investigate the role of the metric tensor in deriving physical quantities in General Relativity
USEFUL FOR

Researchers, physicists, and students in theoretical physics, particularly those focusing on General Relativity and the mathematical formulation of gravitational theories.

TerryW
Gold Member
Messages
229
Reaction score
21

Homework Statement



This post contains the answer to my thread of 10th August...
[/B]
in which I asked if anyone could point out how to derive

##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}##

from

##\mathfrak {L}## = (4)R ##\sqrt{-^{(4)}g}##

Homework Equations



I've finally come up with a solution, again using equations derived from Golovnev's ArXiv paper. The useful equations are:

##K_{ij} = -\frac{1}{2N}(γ_{ij,0} - ^{(3)}∇_{i}N_{j} - ^{(3)}∇_{j}N_{i}) \quad\quad## Golovnev (3),

##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + K^i_iK^j_j - K^{ij}K_{ij} )\quad\quad γ^{ik}γ^{jl}##*Golovnev (13) and

##Γ^0{}_{ij} = -\frac{1}{N}K_{ij}\quad\quad## Golovnev (11)
3. The solution

##K^i_iK^j_j = γ^{ij}K_{ij}γ^{kl}K_{kl}\quad##and ##K^{ij}K_{ij} = K_{ij}γ^{ik}γ^{jl}K_{kl}##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + γ^{ij}γ^{kl}(\frac{1}{4N^2})(γ_{ij,0} - 2^{(3)}∇_{(i}N_{j)})(γ_{kl,0} - 2^{(3)}∇_{(k}N_{l)}))##
##\quad\quad γ^{ik}γ^{jl}(\frac{1}{4N^2})(γ_{ij,0} - 2^{(3)}∇_{(i}N_{j)})(γ_{kl,0} - 2^{(3)}∇_{(k}N_{l)}))##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + (\frac{1}{4N^2})(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(γ_{ij,0} - 2^{(3)}∇_{(i}N_{j)})(γ_{kl,0} - 2^{(3)}∇_{(k}N_{l)}))##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + (\frac{1}{4N^2})(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(γ_{ij,0}γ_{kl,0} -γ_{ij,0}(2^{(3)}∇_{(k}N_{l)}) - γ_{kl,0}(2^{(3)}∇_{(i}N_{j)}) + (2^{(3)}∇_{(i}N_{j)})(2^{(3)}∇_{(k}N_{l)})))##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + (\frac{1}{4N^2})(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(δ^k_iδ^l_jγ_{kl,0}γ_{kl,0} -δ^k_iδ^l_jγ_{kl,0}(2^{(3)}∇_{(k}N_{l)}) - γ_{kl,0}(2^{(3)}∇_{(i}N_{j)}) + (2^{(3)}∇_{(i}N_{j)})(2^{(3)}∇_{(k}N_{l)})))##

I now depart from MTW by deriving ##π^{kl} = \frac{∂(action)}{∂(γ_{kl,0})}## and note that ##(^{(3)}R)## and ##(2^{(3)}∇_{(i}N_{j)})(2^{(3)}∇_{(k}N_{l)})## are both independent of ##γ_{kl,0}## so:

##π^{kl} = \frac{∂(\sqrt{-^{(4)}g}^{(4)}R)}{∂(γ_{kl,0})}= \frac{\sqrt{γ}N}{4N^2}(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(2δ^k_iδ^l_jγ_{kl,0} - δ^k_iδ^l_j(2^{(3)}∇_{(k}N_{l)}) - (2^{(3)}∇_{(i}N_{j)}))##

##= \frac{\sqrt{γ}N}{4N^2}(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(2γ_{ij,0} - (2^{(3)}∇_{(i}N_{j)}) - (2^{(3)}∇_{(i}N_{j)}))##

##= \frac{\sqrt{γ}N}{4N^2}(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(-4NK_{ij}))## from Golovnev's (3) above

##= \frac{\sqrt{γ}N}{4N^2}(K^{kl}-γ^{kl}K^i_i)##

then, using Golovnev's equation (11) ##Γ^0{}_{ij} = -\frac{1}{N}K_{ij}##

##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}##
 
Physics news on Phys.org
##= \sqrt {^{(4)}g} ( -\frac{1}{N}K_{pq} - g_{pq} ^{(4)}(-\frac{1}{N}K_{rs}) g^{rs}) g^{pq} g^{jq}####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{pq} (δ^p_iδ^q_j- g_{pq} g^{rs}δ^p_iδ^q_j)####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{ij} (γ^{ij}- g_{ij} g^{rs}γ^{rs})####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{ij} (γ^{ij}- γ^{ij})####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{ij} (K^{ij}- γ^{ij}K^k_k)####= \sqrt {^{(4)}g} \frac{1}{N^2}(K^{kl}-γ^{kl}K^i_i)##which is the same as the result derived from Lagrangian.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
13K