Deriving conjugate momenta from the Einstein-Hilbert density

In summary, the conversation discusses the derivation of the equation ##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}## from the Lagrangian ##\mathfrak {L}## = (4)R ##\sqrt{-^{(4)}g}## using equations from Golovnev's ArXiv paper. The final result is shown to be equivalent to the result derived from the Lagrangian.
  • #1
TerryW
Gold Member
211
17

Homework Statement



This post contains the answer to my thread of 10th August...
[/B]
in which I asked if anyone could point out how to derive

##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}##

from

##\mathfrak {L}## = (4)R ##\sqrt{-^{(4)}g}##

Homework Equations



I've finally come up with a solution, again using equations derived from Golovnev's ArXiv paper. The useful equations are:

##K_{ij} = -\frac{1}{2N}(γ_{ij,0} - ^{(3)}∇_{i}N_{j} - ^{(3)}∇_{j}N_{i}) \quad\quad## Golovnev (3),

##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + K^i_iK^j_j - K^{ij}K_{ij} )\quad\quad γ^{ik}γ^{jl}##*Golovnev (13) and

##Γ^0{}_{ij} = -\frac{1}{N}K_{ij}\quad\quad## Golovnev (11)
3. The solution

##K^i_iK^j_j = γ^{ij}K_{ij}γ^{kl}K_{kl}\quad##and ##K^{ij}K_{ij} = K_{ij}γ^{ik}γ^{jl}K_{kl}##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + γ^{ij}γ^{kl}(\frac{1}{4N^2})(γ_{ij,0} - 2^{(3)}∇_{(i}N_{j)})(γ_{kl,0} - 2^{(3)}∇_{(k}N_{l)}))##
##\quad\quad γ^{ik}γ^{jl}(\frac{1}{4N^2})(γ_{ij,0} - 2^{(3)}∇_{(i}N_{j)})(γ_{kl,0} - 2^{(3)}∇_{(k}N_{l)}))##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + (\frac{1}{4N^2})(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(γ_{ij,0} - 2^{(3)}∇_{(i}N_{j)})(γ_{kl,0} - 2^{(3)}∇_{(k}N_{l)}))##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + (\frac{1}{4N^2})(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(γ_{ij,0}γ_{kl,0} -γ_{ij,0}(2^{(3)}∇_{(k}N_{l)}) - γ_{kl,0}(2^{(3)}∇_{(i}N_{j)}) + (2^{(3)}∇_{(i}N_{j)})(2^{(3)}∇_{(k}N_{l)})))##

∴ ##\sqrt{-^{(4)}g}^{(4)}R = \sqrt{γ}N(^{(3)}R + (\frac{1}{4N^2})(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(δ^k_iδ^l_jγ_{kl,0}γ_{kl,0} -δ^k_iδ^l_jγ_{kl,0}(2^{(3)}∇_{(k}N_{l)}) - γ_{kl,0}(2^{(3)}∇_{(i}N_{j)}) + (2^{(3)}∇_{(i}N_{j)})(2^{(3)}∇_{(k}N_{l)})))##

I now depart from MTW by deriving ##π^{kl} = \frac{∂(action)}{∂(γ_{kl,0})}## and note that ##(^{(3)}R)## and ##(2^{(3)}∇_{(i}N_{j)})(2^{(3)}∇_{(k}N_{l)})## are both independent of ##γ_{kl,0}## so:

##π^{kl} = \frac{∂(\sqrt{-^{(4)}g}^{(4)}R)}{∂(γ_{kl,0})}= \frac{\sqrt{γ}N}{4N^2}(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(2δ^k_iδ^l_jγ_{kl,0} - δ^k_iδ^l_j(2^{(3)}∇_{(k}N_{l)}) - (2^{(3)}∇_{(i}N_{j)}))##

##= \frac{\sqrt{γ}N}{4N^2}(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(2γ_{ij,0} - (2^{(3)}∇_{(i}N_{j)}) - (2^{(3)}∇_{(i}N_{j)}))##

##= \frac{\sqrt{γ}N}{4N^2}(γ^{ij}γ^{kl}-γ^{ik}γ^{jl})(-4NK_{ij}))## from Golovnev's (3) above

##= \frac{\sqrt{γ}N}{4N^2}(K^{kl}-γ^{kl}K^i_i)##

then, using Golovnev's equation (11) ##Γ^0{}_{ij} = -\frac{1}{N}K_{ij}##

##\pi^{ij} = \sqrt {^{(4)}g} (^{(4)} \Gamma ^0 \,_{pq} - g_{pq} ^{(4)} \Gamma ^0\, _{rs} g^{rs}) g^{pq} g^{jq}##
 
Physics news on Phys.org
  • #2
##= \sqrt {^{(4)}g} ( -\frac{1}{N}K_{pq} - g_{pq} ^{(4)}(-\frac{1}{N}K_{rs}) g^{rs}) g^{pq} g^{jq}####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{pq} (δ^p_iδ^q_j- g_{pq} g^{rs}δ^p_iδ^q_j)####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{ij} (γ^{ij}- g_{ij} g^{rs}γ^{rs})####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{ij} (γ^{ij}- γ^{ij})####= \sqrt {^{(4)}g} \frac{1}{N^2}K_{ij} (K^{ij}- γ^{ij}K^k_k)####= \sqrt {^{(4)}g} \frac{1}{N^2}(K^{kl}-γ^{kl}K^i_i)##which is the same as the result derived from Lagrangian.
 

FAQ: Deriving conjugate momenta from the Einstein-Hilbert density

What is the Einstein-Hilbert density?

The Einstein-Hilbert density is a mathematical expression used in general relativity to describe the curvature of spacetime caused by the presence of matter and energy. It is a key component of Einstein's field equations, which are used to describe the behavior of gravity.

What are conjugate momenta?

Conjugate momenta are a set of quantities used in Hamiltonian mechanics to describe the dynamics of a system. They are related to the position and velocity of particles in a system and are used to calculate the evolution of the system over time.

Why is it important to derive conjugate momenta from the Einstein-Hilbert density?

Deriving conjugate momenta from the Einstein-Hilbert density allows us to describe the dynamics of a system in terms of the curvature of spacetime, rather than just the position and velocity of particles. This is important in understanding the behavior of gravity and its effects on the universe.

How are conjugate momenta derived from the Einstein-Hilbert density?

The process of deriving conjugate momenta from the Einstein-Hilbert density involves using Lagrangian mechanics and the principle of least action. This allows us to find the equations of motion for a system and to determine the conjugate momenta for each particle in the system.

What are some applications of deriving conjugate momenta from the Einstein-Hilbert density?

One important application is in the study of black holes and other extreme gravitational phenomena. By understanding the dynamics of these systems through the derived conjugate momenta, we can gain insights into the nature of gravity and the behavior of matter in extreme conditions.

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
6
Views
2K
Back
Top