I Deriving the conformal Laplacian

  • I
  • Thread starter Thread starter Ssnow
  • Start date Start date
Click For Summary
The discussion revolves around deriving the conformal Laplacian, specifically the equation involving the metric g and its relation to the Laplacian and scalar curvature. The context includes the use of a normal frame where all Christoffel symbols are zero at point y. The goal is to express the Laplacian in a conformal manner, referencing Sniatycki's book on geometric quantization. The original poster, Ssnow, later indicates that they have resolved the problem. The exchange highlights the complexities of working with the conformal Laplacian in differential geometry.
Ssnow
Science Advisor
Messages
573
Reaction score
182
Hi to all!! I have a problem to derive the conformal laplacian

\sum_{m,n}g^{mn}(y)\partial_{q^m}\partial_{q^n}(\psi|\det{(g)}|^{1/4})(y)=\sum_{m,n}|det{g}|^{1/4}(\Delta \Psi -\frac{1}{6}R(y)\psi(y))

where $$g$$ is the metric associated to a Levi Civita connection in a normal frame, we have that in the point $y$ all Christoffel symbols are $$0$$ and $$\Gamma_{ij}^m,k(y)+\Gamma_{ki}^m,j(y)+\Gamma_{jk}^m,i(y)=0.$$

In practice the aim is to find the conformal expression of the Laplacian (Yamabe operator) ... the source is the book "Geometric quantization and quantum mechanics" Sniatycki J.
Thanks,
Ssnow
 
Physics news on Phys.org
I solved the problem, Ssnow
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. I am in no way trolling. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. Yes, I'm questioning the most elementary physics question we're given in this world. The classic elevator in motion question: A person is standing on a scale in an elevator that is in constant motion...