MHB Deriving the first and second order Newton-Cotes formulas

AI Thread Summary
The discussion focuses on deriving the first and second order Newton-Cotes formulas, which improve numerical integration by fitting cubic and quartic curves through discrete points on a function. The first order formula, akin to Simpson's Rule, approximates integrals using a weighted sum of function values at specific points, resulting in the 3/8 rule for integration. The second order formula involves a quartic integrand and leads to Boole's rule, providing an even more accurate approximation. Both formulas utilize systems of equations derived from the integrands to establish relationships between function values at designated points. The thread concludes with a suggestion to relocate the discussion to a more appropriate math forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Much like Simpson's Rule, a.k.a. the prismoidal method, improves upon the trapezoidal method by fitting parabolic arcs across known discrete points on some function $f(x)$ rather than line segments, Newton-Cotes formulas of order 1 and 2 fit cubic and quartic curves across points on the curve.

Newton-Cotes formula order 1

First, we need to compute the definite integral:

$$\int_{-h}^h Ax^3+Bx^2+Cx+D\,dx$$

Applying the FTOC, we find:

$$\int_{-h}^h Ax^3+Bx^2+Cx+D\,dx=\left[\frac{Ax^4}{4}+\frac{Bx^3}{3}+\frac{Cx^2}{2}+Dx \right]_{-h}^h=$$

$$\left(\frac{Ah^4}{4}+\frac{Bh^3}{3}+\frac{Ch^2}{2}+Dh \right)-\left(\frac{A(-h)^4}{4}+\frac{B(-h)^3}{3}+\frac{C(-h)^2}{2}+D(-h) \right)=$$

$$\frac{2Bh^3}{3}+2Dh=\frac{2h}{3}\left(Bh^2+3D \right)$$

We will require that the cubic integrand pass through the points:

$$ \left(-h,y_0 \right),\,\left(-\frac{h}{3},y_1 \right),\,\left(\frac{h}{3},y_2 \right),\,\left(h,y_3 \right)$$

From this, the following system of equations results:

$$y_0=-Ah^3+Bh^2-Ch+D$$

$$y_1=-\frac{Ah^3}{27}+\frac{Bh^2}{9}-\frac{Ch}{3}+D$$

$$y_2=\frac{Ah^3}{27}+\frac{Bh^2}{9}+\frac{Ch}{3}+D$$

$$y_3=Ah^3+Bh^2+Ch+D$$

From these equation, we find:

$$y_0-y_1-y_2+y_3=\frac{16}{9}Bh^2$$

$$Bh^2=\frac{9}{16}\left(y_0-y_1-y_2+y_3 \right)$$

We also find:

$$-y_0+9y_1+9y_2-y_3=16D$$

$$3D=\frac{3}{16}\left(-y_0+9y_1+9y_2-y_3 \right)$$

Using these values, we find:

$$\int_{-h}^h Ax^3+Bx^2+Cx+D\,dx=\frac{2h}{3}\left(Bh^2+3D \right)=\frac{h}{4}\left(y_0+3y_1+3y_2+y_3 \right)$$

Now, suppose that some closed interval $[a,b]$, is partitioned into $n$ sub-intervals of equal width:

$$\Delta x=x_{k+1}-x_{k}=\frac{b-a}{n}$$

where $n$ is a multiple of 3.

Then on each sub-interval $\left[x_{k-3},x_k \right]$, where:

$$h=\frac{3\Delta x}{2}$$

the definite integral may be approximated by:

$$\int_{x_{k-3}}^{x_k} f(x)\,dx\approx\frac{3\Delta x}{8}\left(f\left(x_{k-3} \right)+3f\left(x_{k-2} \right)+3f\left(x_{k-1} \right)+f\left(x_{k} \right) \right)$$

Hence, we have found:

$$\int_a^b f(x)\,dx\approx\frac{3(b-a)}{8n}\left(f\left(x_{0} \right)+3f\left(x_{1} \right)+3f\left(x_{2} \right)+2f\left(x_{3} \right)+\cdots \right.$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left.+2f\left(x_{n-3} \right)+3f\left(x_{n-2} \right)+3f\left(x_{n-1} \right)+f\left(x_{n} \right) \right)$$

This is also known as Simpson's 3/8 rule.

Newton-Cotes formula order 2

Now, let's proceed in a like manner to derive the second order Newton-Cotes formula. First we need to compute:

$$\int_{-h}^h Ax^4+Bx^3+Cx^2+Dx+E\,dx=\frac{2h}{15}\left(3Ah^4+5Ch^2+15E \right)$$

We will require that the quartic integrand pass through the points:

$$ \left(-h,y_0 \right),\,\left(-\frac{h}{2},y_1 \right),\,\left(0,y_2 \right),\,\left(\frac{h}{2},y_3 \right),\,\left(h,y_4 \right)$$

From this, the following system of equations results:

$$y_0=Ah^4-Bh^3+Ch^2-Dh+E$$

$$y_1=\frac{Ah^4}{16}-\frac{Bh^3}{8}+\frac{Ch^2}{4}-\frac{Dh}{2}+E$$

$$y_2=E$$

$$y_3=\frac{Ah^4}{16}+\frac{Bh^3}{8}+\frac{Ch^2}{4}+\frac{Dh}{2}+E$$

$$y_4=Ah^4+Bh^3+Ch^2+Dh+E$$

From these equation, we find:

$$y_0-4y_1+6y_2-4y_3+y_4=\frac{3Ah^4}{2}$$

$$Ah^4=\frac{2}{3}\left(y_0-4y_1+6y_2-4y_3+y_4 \right)$$

We also find:

$$-y_0+16y_1-30y_2+16y_3-y_4=6Ch^2$$

$$Ch^2=\frac{1}{6}\left(-y_0+16y_1-30y_2+16y_3-y_4 \right)$$

Using these values, we find:

$$\int_{-h}^h Ax^4+Bx^3+Cx^2+Dx+E\,dx=\frac{2h}{15}\left(3Ah^4+5Ch^2+15E \right)=\frac{h}{45}\left(7y_0+32y_1+12y_2+32y_3+7y_4 \right)$$

And so, we ultimately find:

$$\int_a^b f(x)\,dx\approx\frac{2(b-a)}{45n}\left(7f\left(x_{0} \right)+32f\left(x_{1} \right)+12f\left(x_{2} \right)+32f\left(x_{3} \right)+14f\left(x_{4} \right)+\cdots\right.$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left.+14f\left(x_{n-4} \right)+32f\left(x_{n-3} \right)+12f\left(x_{n-2} \right)+32f\left(x_{n-1} \right)+7f\left(x_{n} \right) \right)$$

This is also known as Boole's rule.
 
Last edited by a moderator:
Physics news on Phys.org
Back
Top