Describing an equivalence class?

Click For Summary
SUMMARY

The relation ~ defined on the set of real numbers by \(x\)~\(y\) iff \(x^2=y^2\) is proven to be an equivalence relation. The equivalence classes can be described as \([a]=\{x\in \mathbb{R}:x^2=a^2\}=\{a,-a\}\). This relation is equivalent to defining \(x \sim y\) if and only if \(|x| = |y|\). Two strategies for describing equivalence classes include enumerating elements for finite classes and identifying common properties for infinite classes. The equivalence class loses the sign of \(a\), which is crucial information.

PREREQUISITES
  • Understanding of equivalence relations in mathematics
  • Familiarity with real numbers and their properties
  • Basic knowledge of set theory and notation
  • Concept of multiplication and its properties in algebra
NEXT STEPS
  • Research the properties of equivalence relations in abstract algebra
  • Study the concept of equivalence classes in more complex mathematical structures
  • Explore the implications of sign loss in equivalence classes
  • Learn about finite versus infinite sets and their characteristics
USEFUL FOR

Mathematicians, students studying abstract algebra, educators teaching equivalence relations, and anyone interested in the properties of real numbers and their classifications.

skate_nerd
Messages
174
Reaction score
0
I am given that the relation ~ is defined on the set of real numbers by \(x\)~\(y\) iff \(x^2=y^2\). First part of the problem said to prove ~ is an equivalence relation, that wasn't bad. The second part asks to "Describe the equivalence classes". This just seems really vague to me. Is this a common question, with a specific answer expected? I don't need anybody to do the problem for me just an idea of how to answer the question would be appreciated :p
 
Physics news on Phys.org
According to the definition of equivalence class:
$$[a]=\lbrace x\in \mathbb{R}:x\sim a\rbrace=\lbrace x\in \mathbb{R}:x^2= a^2\rbrace=\lbrace a,-a\rbrace.$$
 
Interesting observation: we get the SAME equivalence relation if we define:

$x \sim y$ if and only if $|x| = |y|$.

Why should this be so?

Note we can actually "multiply" these equivalence classes (from our original equivalence relation), by defining:

$[a] \ast = [ab]$.

This works because if:

$a^2 = a'^2$ and $b^2 = b'^2$ (even if $a,a'$ are unequal, and similarly with the $b$'s), then:

$(ab)^2 = a^2b^2 = a'^2b'^2 = (a'b')^2$.

(To see why this is important, consider what goes horribly wrong with addition).

It is hopefully clear that our equivalence classes behave a lot like the non-negative reals with the single operation of multiplication. On this set, the correspondence:

$a \leftrightarrow a^2$

is a one-to-one correspondence, and furthermore, this correspondence preserves multiplication:

$(ab) \leftrightarrow (ab)^2 = a^2b^2$ (we get the same result if we multiply first, and take the equivalence class second, or if we take the equivalence classes first, and then "multiply" them as above).

********

In problems like this you may encounter in the future, there are 2 main strategies to employ in "describing the equivalence classes"

a) Attempt to enumerate EVERY element of a given equivalence class...this works best when each equivalence class is finite.

b) Search for common properties each member of an equivalence class possesses...this works best when the equivalence classes themselves are infinite sets.

********

Finally, it is often good to ask yourself: what information does an equivalence class forget? In this case, the information "lost" is the SIGN of $a$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K