MHB Describing an equivalence class?

Click For Summary
The relation defined on real numbers by \(x \sim y\) iff \(x^2 = y^2\) is established as an equivalence relation. The equivalence classes can be described as \([a] = \{x \in \mathbb{R} : x^2 = a^2\} = \{a, -a\}\). This relation is equivalent to defining \(x \sim y\) if \(|x| = |y|\). The multiplication of equivalence classes can be defined as \([a] \ast [b] = [ab]\), preserving the properties of multiplication. A key takeaway is that equivalence classes lose specific information, such as the sign of \(a\).
skate_nerd
Messages
174
Reaction score
0
I am given that the relation ~ is defined on the set of real numbers by \(x\)~\(y\) iff \(x^2=y^2\). First part of the problem said to prove ~ is an equivalence relation, that wasn't bad. The second part asks to "Describe the equivalence classes". This just seems really vague to me. Is this a common question, with a specific answer expected? I don't need anybody to do the problem for me just an idea of how to answer the question would be appreciated :p
 
Physics news on Phys.org
According to the defintion of equivalence class:
$$[a]=\lbrace x\in \mathbb{R}:x\sim a\rbrace=\lbrace x\in \mathbb{R}:x^2= a^2\rbrace=\lbrace a,-a\rbrace.$$
 
Interesting observation: we get the SAME equivalence relation if we define:

$x \sim y$ if and only if $|x| = |y|$.

Why should this be so?

Note we can actually "multiply" these equivalence classes (from our original equivalence relation), by defining:

$[a] \ast = [ab]$.

This works because if:

$a^2 = a'^2$ and $b^2 = b'^2$ (even if $a,a'$ are unequal, and similarly with the $b$'s), then:

$(ab)^2 = a^2b^2 = a'^2b'^2 = (a'b')^2$.

(To see why this is important, consider what goes horribly wrong with addition).

It is hopefully clear that our equivalence classes behave a lot like the non-negative reals with the single operation of multiplication. On this set, the correspondence:

$a \leftrightarrow a^2$

is a one-to-one correspondence, and furthermore, this correspondence preserves multiplication:

$(ab) \leftrightarrow (ab)^2 = a^2b^2$ (we get the same result if we multiply first, and take the equivalence class second, or if we take the equivalence classes first, and then "multiply" them as above).

********

In problems like this you may encounter in the future, there are 2 main strategies to employ in "describing the equivalence classes"

a) Attempt to enumerate EVERY element of a given equivalence class...this works best when each equivalence class is finite.

b) Search for common properties each member of an equivalence class possesses...this works best when the equivalence classes themselves are infinite sets.

********

Finally, it is often good to ask yourself: what information does an equivalence class forget? In this case, the information "lost" is the SIGN of $a$.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K