Describing Sets: A Comprehensive Guide

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Sets
Click For Summary

Discussion Overview

The discussion revolves around the verbal description of various mathematical sets, particularly in the context of coordinate geometry. Participants explore how to articulate the properties and graphical representations of these sets, including sets defined in the Cartesian plane and their relationships to distance from points.

Discussion Character

  • Exploratory, Technical explanation, Conceptual clarification, Debate/contested

Main Points Raised

  • One participant describes set $A:=\{(x,y)\in \mathbb{R}^2\mid x>0, y\leq 1\}$ as points where the first coordinate is positive and the second is less than or equal to 1, questioning if the description is sufficient.
  • Another participant agrees with the description of set $A$ but suggests a correction from $(0/1)$ to $(0,1)$ for clarity.
  • For set $C:=\mathbb{N}\times \{x\in \mathbb{R}\mid 0\leq x\leq 2\}$, one participant describes it as the Cartesian product of natural numbers and the interval $[0,2]$, while another proposes it represents vertical line segments.
  • Participants discuss the corresponding set $\{(x,y)\mid 0\leq x \leq 2, 1\leq y\leq 3\}$, with one suggesting it should be $1 < y < 3$ instead.
  • There is a question regarding the definition of set $F$, which is described as points at least as far from the origin as $P=(3,0)$. Participants explore whether this leads to the set $F=\{(x,y)\mid \sqrt{x^2+y^2} \ge 3\}$, with some uncertainty about the formulation.

Areas of Agreement / Disagreement

Participants generally agree on the descriptions of sets $A$ and $C$, but there are differing opinions on the boundaries of the corresponding set and the interpretation of set $F$. The discussion remains unresolved regarding the precise definitions and graphical representations.

Contextual Notes

Participants express uncertainty about the correct notation and boundaries for the sets discussed, indicating potential limitations in their understanding or definitions used.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

  • I want to describe in words the following sets:

    1. $A:=\{(x,y)\in \mathbb{R}^2\mid x>0, y\leq 1\}$

    $A$ is the set of all pointgs where the first coordinate is positiv and the second one is less or equal to $1$.

    It is the subarea of the plane that is under the point $(0/1)$ to the right, without the y-axis.

    Is this description enough or can we say also something else? (Wondering) The graphical representation is:

    View attachment 8510
    2. $C:=\mathbb{N}\times \{x\in \mathbb{R}\mid 0\leq x\leq 2\}$

    $C$ is the cartesian product of the natural number and the interval $[0,2]$. It s the set of points with two coordinates $(n,x)$, where the first coordinate is a natural number and the second coordinate is a real number in the interval $[0,2]$.

    What else can we say here? How does the graphical representation look like?

    (Wondering)

    $$ $$
  • I want to give also the corresponding set fo the following:

    View attachment 8511

    It is $\{(x,y)\mid 0\leq x \leq 2, 1\leq y\leq 3\}$, right? Is this enough, or could we also justify that it is like that? (Wondering)

    $$ $$
  • $F$ is the set of all points in the plane that are at least as far from the origin as $ P = (3 \mid 0) $. Does this mean that we have the set $$F=\{(x,y)\mid x^2+y^2\leq (x-3)^2+y^2\}$$ or have I understood wrong the definition of $F$ ? (Wondering)
 

Attachments

  • mengeA.JPG
    mengeA.JPG
    115 KB · Views: 141
  • Menge_dar.JPG
    Menge_dar.JPG
    35.4 KB · Views: 120
Physics news on Phys.org
mathmari said:
Hey! :o

  • I want to describe in words the following sets:

    1. $A:=\{(x,y)\in \mathbb{R}^2\mid x>0, y\leq 1\}$

    $A$ is the set of all pointgs where the first coordinate is positiv and the second one is less or equal to $1$.

    It is the subarea of the plane that is under the point $(0/1)$ to the right, without the y-axis.

    Is this description enough or can we say also something else? (Wondering) The graphical representation is:

Hey mathmari!

Seems fine to me. (Nod)
Btw, shouldn't it be $(0,1)$ instead of $(0/1)$?

mathmari said:
  • 2. $C:=\mathbb{N}\times \{x\in \mathbb{R}\mid 0\leq x\leq 2\}$

    $C$ is the cartesian product of the natural number and the interval $[0,2]$. It s the set of points with two coordinates $(n,x)$, where the first coordinate is a natural number and the second coordinate is a real number in the interval $[0,2]$.

    What else can we say here? How does the graphical representation look like?

It's a set of vertical line segments isn't it? (Thinking)

mathmari said:
  • $$ $$
  • I want to give also the corresponding set fo the following:

    It is $\{(x,y)\mid 0\leq x \leq 2, 1\leq y\leq 3\}$, right? Is this enough, or could we also justify that it is like that?

It seems as if it should be $1 < y < 3$, shouldn't it?
mathmari said:
  • $F$ is the set of all points in the plane that are at least as far from the origin as $ P = (3 \mid 0) $. Does this mean that we have the set $$F=\{(x,y)\mid x^2+y^2\leq (x-3)^2+y^2\}$$ or have I understood wrong the definition of $F$ ?

What is $ P = (3 \mid 0) $? (Wondering)
 
Klaas van Aarsen said:
Seems fine to me. (Nod)
Btw, shouldn't it be $(0,1)$ instead of $(0/1)$?

Oh yes (Wasntme)
Klaas van Aarsen said:
It's a set of vertical line segments isn't it? (Thinking)

So, we get the following, or not? (Wondering)

View attachment 8512
Klaas van Aarsen said:
What is $ P = (3 \mid 0) $? (Wondering)

Oh I meant $P(3, 0)$. (Blush)
 

Attachments

  • lines.JPG
    lines.JPG
    101 KB · Views: 124
mathmari said:
So, we get the following, or not?

Yes, although I'd be inclined to draw them vertically.
That is because we usually draw the first coordinate along the x-axis, and the second along the y-axis. (Nerd)

mathmari said:
Oh I meant $P(3, 0)$.

Okay, so we're talking about the points that have at least the same distance to the origin as $(3,0)$ yes?
Its distance is $3$.
So we're looking at all points with $\sqrt{x^2+y^2} \ge 3$, don't we? (Thinking).
 
Klaas van Aarsen said:
Yes, although I'd be inclined to draw them vertically.
That is because we usually draw the first coordinate along the x-axis, and the second along the y-axis. (Nerd)

Oh yes, you're right! So, we get the following, don't we?

View attachment 8513

(Wondering)
Klaas van Aarsen said:
Okay, so we're talking about the points that have at least the same distance to the origin as $(3,0)$ yes?
Its distance is $3$.
So we're looking at all points with $\sqrt{x^2+y^2} \ge 3$, don't we? (Thinking).

Ahh ok! So we have the set $$F=\{(x,y)\mid \sqrt{x^2+y^2} \ge 3\}$$ right? (Wondering)
 

Attachments

  • line.JPG
    line.JPG
    111.9 KB · Views: 115
mathmari said:
Oh yes, you're right! So, we get the following, don't we?

Ahh ok! So we have the set $$F=\{(x,y)\mid \sqrt{x^2+y^2} \ge 3\}$$ right?

Yep. (Nod)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K