Designing a spiral with a certain angle relative to movement direction

In summary, the disk will have a pin that can move back and forth in a slot in a gear, and will only be able to switch tracks when it reaches a point. The spiral is self-similar, meaning that if you "blow it up" uniformly it can be laid atop the smaller version exactly.
  • #1
TL;DR Summary
Designing a spiral with a 45 degree angle relative to the movement of a disk orbiting around a point
I have a disk traveling on the inner blue track (let's say the blue part is the center of the disk).
I want to push the disk outside (as the disk is traveling in a circle) to the outer track.
The black part is the wall separating the tracks

1664044007937.png




To that end, I've made some calculations, but I have some concerns regarding my results, and am wondering if there's a better way to go about it.
I have a decent math background, but no engineering background at all.

I started out by noting the direction of movement for the disk, say it's moving counter-clockwise. If c is a point on the inner circle (for simplicity: unit circle), then the movement direction is determined as follows:
1664044216960.gif

Also, some relevant trigonometric identities:
1664044360242.gif

where Δθ is the angle between u and v.

Let's say I want a 45 degree angle between my spiral and the movement direction of the disk (my very limited physics knowledge tells me a steeper angle would require more force to be applied because more of the "equal and opposite reaction" thing would be in the direction that's against the disk movement. Obviously a smaller angle would mean it takes longer to get the disk as far as I need it to go).
The sine and cosine of 45 degrees go without saying, yielding:
1664047123247.gif

And after doing some mathTM
1664044740436.gif




1664047195662.gif

So now we have v, which... I'm not sure how to put this into words in a technically accurate way, so let's say it's the direction of the tangent to the spiral. Meaning its slope is that of the derivative. Meaning:
1664048026581.gif

is the derivative of the function describing my spiral, with α being the angle between the x-axis and the vector pointing to some point on the circle.

This is the part where I start to get worried and confused, because (1) I potentially have a division by 0 here, and (2) the point is to move the disk during rotation and I'm not sure if my reasoning still holds at this point.

With a little help from wikipedia I got to:
1664048286861.gif

Being my derivative.
So if, say, I wanted to start the transition when we're at 45 degrees... I start off on a singularity.

So, did I get anything wrong? Is there a better approach to solving this problem?
 
Engineering news on Phys.org
  • #2
Try researching "equiangular spiral" (or Bernoulli spiral or logarithmic spiral). Does that help?
 
  • Like
Likes The Bill and DefinitelyAnEnjinear
  • #3
What is driving the rotation and what is forcing the disc to follow the circular trajectories and switch from one to another?
 
  • #4
hutchphd said:
Try researching "equiangular spiral" (or Bernoulli spiral or logarithmic spiral). Does that help?
A brief look tells me the distances increase geometrically as opposed to an Archimedean spiral where the distances increase by a constant. Is this really what I should be looking at? my intuition tells me I need distances that increase by a constant, don't I?

Edit: I see now that the angle remains a constant according to wikipedia. counter-intuitive to me but it definitely seems like the answer.

Lnewqban said:
What is driving the rotation and what is forcing the disc to follow the circular trajectories and switch from one to another?
1664051376636.png

The disk will have a pin in it that will be able to move back and forth in a slot in a gear which will be driven.
There will be a wall preventing the disk from switching tracks until it reaches the point
I didn't want to complicate the question with details that seem unimportant.
 
  • #5
DefinitelyAnEnjinear said:
intuitive to me but it definitely seems like the answer.
What I find interesting (and obvious, after you see it!) is that the spiral is self-similar: If you "blow it up" uniformly it can be laid atop the smaller version exactly (with a rotation). Of course that follows from the equal angle requirement. Fun.
 
  • Like
  • Informative
Likes The Bill and DefinitelyAnEnjinear
  • #6
DefinitelyAnEnjinear said:
...
The disk will have a pin in it that will be able to move back and forth in a slot in a gear which will be driven.
There will be a wall preventing the disk from switching tracks until it reaches the point
I didn't want to complicate the question with details that seem unimportant.
I see.
Thank you.
 

Suggested for: Designing a spiral with a certain angle relative to movement direction

Back
Top