High School Determinant of a transposed matrix

  • Thread starter Thread starter Eclair_de_XII
  • Start date Start date
  • Tags Tags
    Determinant Matrix
Click For Summary
The discussion focuses on proving the equality of the determinants of a matrix and its transpose, expressed as det(A) = det(A^T). The proof involves showing that each summand in the determinant of A corresponds to a summand in the determinant of A^T through a bijection between the permutation groups. The argument highlights that for every permutation in the set of permutations, there exists a unique inverse permutation, maintaining the sign of the permutation. The final conclusion is that the determinants are equal due to the properties of permutations and their inverses, confirming that det(A) = det(A^T). This proof emphasizes the fundamental relationship between a matrix and its transpose in linear algebra.
Eclair_de_XII
Messages
1,082
Reaction score
91
TL;DR
Let ##A## be a matrix of size ##(n,n)## where ##n\in\mathbb{N}##. Then the determinant of ##A## is equal to the determinant of ##A## transposed, to be denoted ##A^T##.
By definition, ##\det A=\sum_{p_j\in P}\textrm{sgn}(p_j)\cdot a_{1j_1}\cdot\ldots\cdot a_{nj_n}##, where ##P## denotes the set of all permutations of the ordered sequence ##(1,\ldots,n)##. Denote the number of permutations needed to map the natural ordering to ##p_j## as ##N_j##.

Now consider ##\det A^T## which is equal to:
\begin{align}\sum_{p_i\in P}\textrm{sgn}(p_i)\cdot a_{i_11}\cdot\ldots\cdot a_{i_nn}\end{align}

Note: ##i_k## denotes the element of ##p_i## at the k-th index.

To show equality, we must show that each summand in ##\det A## is also in ##\det A^T##. In other words, we must show that there is a permutation ##p_l## s.t.:
\begin{align}
\textrm{sgn}(p_l)\cdot a_{l_11}\cdot\ldots\cdot a_{l_nn}=\textrm{sgn}(p_j)\cdot a_{j_11}\cdot\ldots\cdot a_{j_nn}
\end{align}

Consider the ordered list:
\begin{align}(i_1,1),\ldots,(i_n,n)\end{align}

For each element in the list, there is an integer ##m## s.t. ##j_m=k##. It will take ##N_j## permutations in order to map this ordering to an ordering of the form:
\begin{align}(i_1',j_1),\ldots,(i_n',j_n)\end{align}

where ##(i_1',\ldots,i_n')## is the ordering obtained from permutating ##p_i## wrt the ordering ##p_j##. Bearing in mind that ##\prod_{k=1}^n a_{i_kk}\equiv \prod_{k=1}^n a_{i_k'j_k}##, we have:
\begin{align}
\textrm{sgn}(p_i)\cdot\prod_{k=1}^n a_{i_kk}=\textrm{sgn}(p_j)\cdot\textrm{sgn}(p_{i'})\cdot\prod_{k=1}^n a_{i_k'j_k}
\end{align}

It will take ##N_{i'}## permutations to map ##p_{i'}## to the natural ordering. This corresponds to ##N_{i'}## sign changes:
\begin{align}
\textrm{sgn}(p_j)\cdot\prod_{k=1}^n a_{kj_k}=\textrm{sgn}(p_{i'})\cdot\left[\textrm{sgn}(p_j)\cdot\textrm{sgn}(p_{i'})\cdot\prod_{k=1}^n a_{i_k'j_k}\right]
\end{align}

% I am asking for critique on this proof. Is it accurate? Is it understandable? Is there any unnecessary notation I used?
 
Last edited by a moderator:
Physics news on Phys.org
Generally one uses S_N for the group of permutations of \{1, \dots, N\} and \sigma and \rho for arbitrary permutations. You can simplify your notation and argument significantly by using the fact that S_N is a group acting on \{1, \dots, N\}.

By definition <br /> \begin{split}<br /> \det A &amp;= \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{N\sigma(N)}, \\<br /> \det A^T &amp;= \sum_{\rho \in S_N} \operatorname{sgn}(\rho) a_{\rho(1)1} \cdots a_{\rho(N)N}.<br /> \end{split} Your claim is then that there exists a bijection from S_N to itself such that if \sigma \mapsto \rho_\sigma then for each \sigma \in S_N we have <br /> \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{N\sigma(N)} = \operatorname{sgn}(\rho_\sigma) a_{\rho_\sigma(1)1} \cdots a_{\rho_\sigma(N)N}. (We need a bijection because we want each summand of \det A to appear exactly once in the sum for \det A^T and vice versa). Ordering the factors on the left hand side by the second index rather than the first is the way to proceed, but because \sigma is a permutation this can be done in one step: The factor with second index i has first index \sigma^{-1}(i). Two basic facts about permutation groups complete the proof.
 
Unfortunately, I've not taken abstract algebra during my undergraduate career, so I am unfamiliar with groups and would be uncomfortable attempting to implement them in my explanation/proof.

I meant to say in the last two lines that given any row-ordering ##p_i## in a summand of the determinant of the transpose, there is a row-ordering ##p_{i'}## that can be applied to ##p_i##. The row-ordering ##p_{i'}## is how I described it earlier. This resulting ordering corresponds to an arbitrary term in the determinant of the original matrix.
 
Last edited:
What I would write is: For every permutation ##\sigma## in the set of permutations (denoted ##S_N##) there exists a unique inverse permutation ##\sigma^{-1}## in the set of permutations and where no two distinct permutations have the same inverse.

Say ##\sigma (i) = j## then

$$
a_{i \sigma(i)} = a_{ij} = a_{\sigma^{-1} (j) j}
$$

so that

$$
\prod_{i=1}^N a_{i \sigma (i)} = \prod_{i=1}^N a_{\sigma^{-1} (i) i} .
$$
If ##\sigma## is an even permutation then obviously ##\sigma^{-1}## is also an even permutation. If ##\sigma## is an odd permutation then obviously ##\sigma^{-1}## is also an odd permutation. Therefore,

$$
\text{sgn} (\sigma) = \text{sgn} (\sigma^{-1})
$$

and

$$
\text{sgn} (\sigma ) \prod_{i=1}^N a_{i \sigma (i)} = \text{sgn} ( \sigma^{-1} ) \prod_{i=1}^N a_{\sigma^{-1} (i) i} .
$$

Then

\begin{align*}
\det (A) & = \sum_{\sigma \in S_N} \text{sgn} (\sigma ) \prod_{i=1}^N a_{i \sigma (i)}
\nonumber \\
& = \sum_{\sigma \in S_N} \text{sgn} ( \sigma^{-1} ) \prod_{i=1}^N a_{\sigma^{-1} (i) i}
\nonumber \\
& = \sum_{\sigma \in S_N} \text{sgn} ( \sigma ) \prod_{i=1}^N a_{\sigma (i) i} = \det (A^T)
\end{align*}

where we have arrived at the last line by noting that for every permutation ##\sigma## in ##S_N## there exists a unique inverse permutation ##\sigma^{-1}## in ##S_N## and where no two distinct permutations have the same inverse, and so we are in effect summing over all permutations in ##S_N## in the second line.
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K