MHB Determinant Property: Seen it Before? True?

Dustinsfl
Messages
2,217
Reaction score
5
Has anyone seen this before? Is this true?
$$
\begin{vmatrix}
a & b+c & 1\\
b & a+c & 1\\
c & a+b & 1
\end{vmatrix} =
\begin{vmatrix}
a & b & 1\\
b & a & 1\\
c & a & 1
\end{vmatrix} +
\begin{vmatrix}
a & c & 1\\
b & c & 1\\
c & b & 1
\end{vmatrix}
$$
In this example this works but I don't know if this just a coincidence.
 
Physics news on Phys.org
Well, determinants are linear w.r.t. addition in any single row or column. (Wink)
 
Determinants are multilinear, alternating functions of row or column vectors. If one adds the stipulation that:

$\det(I_n) = 1$

then these properties completely determine the determinant function.

Clearly one such function (the determinant function) with these properties exists. For a proof that the determinant function is the ONLY function with these properties, see:

http://www.millersville.edu/~bikenaga/linear-algebra/det-unique/det-unique.html
 

Similar threads

Back
Top