MHB Determinants and Rank: Solving for det(A) Given Rank(A)=4

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Determinants
Yankel
Messages
390
Reaction score
0
Hello

I have a question, I think I solved it, and I would like to confirm...

Let A be a 4X4 matrix with and let rank(A)=4.
It is known that det(A^2) = det(-A)
Is det(A)=-1 ?

I think the answer is no.

det(A)*det(A)=det(-A)
det(A)*det(A)=(-1)^4 * det(A) = det(A)
det(A)*det(A) = det(A)

this is true only when det(A)=1 or det(A)=0. The later can't be since rank(A)=4, so det(A)=1. Am I correct ?

(Thinking)
 
Physics news on Phys.org
Yankel said:
Hello

I have a question, I think I solved it, and I would like to confirm...

Let A be a 4X4 matrix with and let rank(A)=4.
It is known that det(A^2) = det(-A)
Is det(A)=-1 ?

I think the answer is no.

det(A)*det(A)=det(-A)
det(A)*det(A)=(-1)^4 * det(A) = det(A)
det(A)*det(A) = det(A)

this is true only when det(A)=1 or det(A)=0. The later can't be since rank(A)=4, so det(A)=1. Am I correct ?

(Thinking)

For a matrix \(\bf{A}\) of dimension \(2n\times 2n,\ n \in \mathbb{N}_+\): \(\det(-{\bf{A}})=\det({\bf{A}})\).

So you have the equality \([\det({\bf{A}})]^2=\det({\bf{A}})\), and also \(\det({\bf{A}}) \ne 0\)

CB
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top