- #1
tommyxu3
- 240
- 42
I have a problem of proving an identity about determinants. For ##A\in M_{m\times n}(\mathbb{R}),## a matrix with ##m## rows and ##n## columns, prove the following identity.
$$|\det(A^tA)|=\sum_{1\le j_1\le ... \le j_n \le m} (det(A_{j_1...j_n}))^2$$
where ##A_{j_1...j_n}## is the matrix whose ##(i,k)##-entry is ##a_{j,k},## and ##A^t## is the transpose of ##A.##
The example of this is given here to make clear:
$$\det (
\begin{pmatrix}
1 & 3 &5\\
2 & 4 &6\\
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}) =
(\det\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix})^2+
(\det\begin{pmatrix}
1 & 2 \\
5 & 6 \\
\end{pmatrix})^2+
(\det\begin{pmatrix}
3 & 4 \\
5 & 6 \\
\end{pmatrix})^2
.$$
The equation is clearly holds fro square matrix, but for general type I cannot solve...I try to prove it in induction from ##m\times n## to ##(m+1)\times n## but failed. This may be related to the notion of area (the given example is the area of a triangle on a plane).
Thanks for any ideas in advance!
$$|\det(A^tA)|=\sum_{1\le j_1\le ... \le j_n \le m} (det(A_{j_1...j_n}))^2$$
where ##A_{j_1...j_n}## is the matrix whose ##(i,k)##-entry is ##a_{j,k},## and ##A^t## is the transpose of ##A.##
The example of this is given here to make clear:
$$\det (
\begin{pmatrix}
1 & 3 &5\\
2 & 4 &6\\
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}) =
(\det\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix})^2+
(\det\begin{pmatrix}
1 & 2 \\
5 & 6 \\
\end{pmatrix})^2+
(\det\begin{pmatrix}
3 & 4 \\
5 & 6 \\
\end{pmatrix})^2
.$$
The equation is clearly holds fro square matrix, but for general type I cannot solve...I try to prove it in induction from ##m\times n## to ##(m+1)\times n## but failed. This may be related to the notion of area (the given example is the area of a triangle on a plane).
Thanks for any ideas in advance!