Determine a fractional square root without calculator

Click For Summary
SUMMARY

The forum discussion focuses on determining the fractional square root of ##\sqrt{\frac{100}{99}}## without a calculator. Participants suggest using the Binomial theorem for quick approximations, particularly expanding the expression as ##(1 + \frac{1}{99})^{\frac{1}{2}}## or ##(1 - 0.01)^{-1/2}##. The first two terms of the binomial expansion yield an approximation of 1.005, correcting an earlier miscalculation of 0.995. The discussion emphasizes the importance of using small values of ##\epsilon## for accurate approximations in binomial expansions.

PREREQUISITES
  • Understanding of the Binomial theorem
  • Familiarity with fractional exponents
  • Basic algebraic manipulation skills
  • Knowledge of Taylor series for approximations
NEXT STEPS
  • Study the Binomial theorem and its applications in approximations
  • Learn about Taylor series and their convergence properties
  • Explore numerical methods for calculating square roots
  • Practice problems involving fractional exponents and approximations
USEFUL FOR

Mathematicians, students preparing for exams, and anyone interested in numerical methods for approximating square roots without calculators.

vcsharp2003
Messages
913
Reaction score
179
TL;DR
Solving a numerical problem without a calculator
I have to solve a certain numerical problem without using calculator and furthermore, there is a time limit for solving this problem.

The answer I have got so far is ## \sqrt{\frac{100}{99}}##

I know I can reduce the numerator to 10 but then I am stuck with square root of denominator which is not a perfect square.

Question: How would I determine in shortest possible time the above square root without any calculator or tables?
 
Mathematics news on Phys.org
jedishrfu said:
There are several choices outlined here:

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
Is it possible to use Binomial theorem to do a quick approximation of the fractional square root? This might be better than finding square root of denominator since then I will need to do two approximations, first for denominator square root and then find decimal equivalent for fraction. Binomial theorem might involve a single operation.
 
vcsharp2003 said:
Is it possible to use Binomial theorem to do a quick approximation of the fractional square root?
How could that not be possible?

PS note that ##(\frac{100}{99})^{1/2} = (\frac{99}{100})^{-1/2}##
 
  • Like
Likes   Reactions: docnet and vcsharp2003
PeroK said:
How could that not be possible?
That might be easier. I will try expanding the binomial expression on RHS in equation below and maybe take only the first two terms.

$$\sqrt{\frac{100}{99}} = {(1 +\frac{1}{99})}^{\frac{1}{2}}$$
 
vcsharp2003 said:
That might be easier. I will try expanding the binomial expression below and maybe take only the first two terms.

$${(1 +\frac{1}{99})}^{\frac{1}{2}}$$
Okay, but see above for a useful idea.
 
  • Like
Likes   Reactions: docnet
PeroK said:
Okay, but see above for a useful idea.
I saw your last post. Once I get ##(\frac{99}{100})^{-1/2}##, then how would I proceed?
 
vcsharp2003 said:
I saw your last post. Once I get ##(\frac{99}{100})^{-1/2}##, then how would I proceed?
Use the binomial theorem. This time you have ##(1 - 0.01)^{-1/2}##
 
  • Like
Likes   Reactions: docnet and vcsharp2003
Of course, you could always approximate ##\frac 1 {99} \approx 0.01##, but inverting the fraction feels neater to me.
 
  • Like
Likes   Reactions: docnet and vcsharp2003
  • #10
PeroK said:
Of course, you could always approximate ##\frac 1 {99} \approx 0.01##, but inverting the fraction feels neater to me.
Yes, that's more easier than what I suggested since getting integer powers of .01 is very easy as opposed to getting integer powers of ##\frac{1}{99}##. After taking only first two terms of binomial expansion I get an approximation of 1.005.

$$\sqrt{\frac{100}{99}} = (1 - 0.01)^{-1/2} \approx 1.005$$

First two terms of binomial expression are obtained as below.
$$ (1 - 0.01)^{-1/2} = 1^{-\frac{1}{2}} + (-\frac{1}{2}) 1^ {(-\frac{1}{2} - 1)} (-.01)^1 + \frac{(-\frac{1}{2}) (-\frac{1}{2} -1)}{(1)(2)} 1^ {(-\frac{1}{2} - 2)} (-.01)^2 + ...$$

Taking the first two terms in binomial expression since the terms starting from third term are going to very small ( even smaller than .0001) we get ##1+.005 = 1.005## which seems correct. My initial approximation of .995 was not correct.
 
Last edited:
  • #11
vcsharp2003 said:
Yes, that's more easier than what I suggested since getting integer powers of .01 is very easy as opposed to getting integer powers of 199. After taking only first two terms of binomial expansion I get an approximation of 0.995.

10099=(1−0.01)−1/2≈.995
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
 
  • Like
Likes   Reactions: docnet
  • #12
PeroK said:
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
You are correct. I have edited my last post to reflect this. Thanks.
 
  • #13
PeroK said:
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
Your formulas are awesome. I can memorize these formulas for quicker calculations and not even bother to use Binomial expansion. Thanks.
 
  • #14
vcsharp2003 said:
Yes, that's more easier than what I suggested since getting integer powers of .01 is very easy as opposed to getting integer powers of ##\frac{1}{99}##. After taking only first two terms of binomial expansion I get an approximation of 0.995.

$$\sqrt{\frac{100}{99}} = (1 - 0.01)^{-1/2} \approx .995$$

First two terms of binomial expression are obtained as below.
$$ (1 - 0.01)^{-1/2} = 1^{-\frac{1}{2}} + (-\frac{1}{2}) 1^ {(-\frac{1}{2} - 1)} (-.01)^1 + \frac{(-\frac{1}{2}) (-\frac{1}{2} -1)}{(1)(2)} 1^ {(-\frac{1}{2} - 2)} (-.01)^2 + ...$$

Taking the first two terms in binomial expression since the terms starting from third term are going to very small ( even smaller than .0001) we get ##1+.005 = 1.005## which seems correct.
The usual binomial expansion has a ##1## in the first position. I would always take the factor out first. E.g.
$$(a + \epsilon)^{1/2} = a^{1/2}(1 + \frac{\epsilon}{a})^{1/2}$$ In any case, if you already have ##1## here then: $$(1 + \epsilon)^{1/2} = 1 + \frac 1 2 \epsilon + \frac{1}{2!}(\frac 1 2)(-\frac 1 2)\epsilon^2 + \frac{1}{3!}(\frac 1 2)(-\frac 1 2)(-\frac 3 2)\epsilon^3 \dots$$ Also, to avoid missing minus signs, I would tend to do: $$(1 - \epsilon)^{1/2} = (1 + (-\epsilon))^{1/2} = 1 + \frac 1 2 (-\epsilon) + \frac{1}{2!}(\frac 1 2)(-\frac 1 2)(-\epsilon)^2 + \frac{1}{3!}(\frac 1 2)(-\frac 1 2)(-\frac 3 2)(-\epsilon)^3 \dots$$
 
  • Like
Likes   Reactions: docnet and vcsharp2003
  • #15
PeroK said:
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
I think these approximation formulas are only valid if ##\epsilon## is very small i.e. as close to 0 as possible on the real number line. Is that correct?
 
  • #16
vcsharp2003 said:
I think these approximation formulas are only valid if ##\epsilon## is very small i.e. as close to 0 as possible on the real number line. Is that correct?
Yes, that's why I used ##\epsilon##. The series converges for any ##-1 < \epsilon < 1##, but it's only useful as an approximation for small ##\epsilon##.
 
  • Like
Likes   Reactions: docnet and vcsharp2003

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
6K
Replies
1
Views
2K