Determine a fractional square root without calculator

Click For Summary

Discussion Overview

The discussion revolves around finding a fractional square root, specifically ## \sqrt{\frac{100}{99}} ##, without the use of a calculator. Participants explore various methods for approximating this value, including the use of the Binomial theorem and series expansions, while considering the constraints of time and accuracy.

Discussion Character

  • Exploratory, Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant presents the problem of calculating ## \sqrt{\frac{100}{99}} ## and expresses difficulty with the denominator.
  • Another participant suggests using the Binomial theorem for a quick approximation, arguing it may simplify the process compared to calculating the square root of the denominator directly.
  • Several participants discuss the expansion of the Binomial expression, considering the first two terms for approximation.
  • There is a back-and-forth regarding the correctness of approximations, with some participants suggesting that the answer must be greater than 1, while others refine their calculations based on this feedback.
  • Participants explore the implications of using the Binomial theorem, including the potential for errors in approximation and the conditions under which the approximations hold.
  • Some participants express a preference for inverting the fraction as a neater approach to approximation.
  • There is discussion about the validity of approximation formulas, with emphasis on the requirement for small values of ##\epsilon## for accuracy.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for approximation, and there are competing views on the accuracy of the approximations derived from the Binomial theorem. The discussion remains unresolved regarding the most effective approach.

Contextual Notes

Limitations include the dependence on the size of ##\epsilon## for the validity of the approximation formulas and the potential for errors in the application of the Binomial expansion. The discussion also reflects varying levels of confidence in the approximations made.

vcsharp2003
Messages
913
Reaction score
179
TL;DR
Solving a numerical problem without a calculator
I have to solve a certain numerical problem without using calculator and furthermore, there is a time limit for solving this problem.

The answer I have got so far is ## \sqrt{\frac{100}{99}}##

I know I can reduce the numerator to 10 but then I am stuck with square root of denominator which is not a perfect square.

Question: How would I determine in shortest possible time the above square root without any calculator or tables?
 
Mathematics news on Phys.org
jedishrfu said:
There are several choices outlined here:

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
Is it possible to use Binomial theorem to do a quick approximation of the fractional square root? This might be better than finding square root of denominator since then I will need to do two approximations, first for denominator square root and then find decimal equivalent for fraction. Binomial theorem might involve a single operation.
 
vcsharp2003 said:
Is it possible to use Binomial theorem to do a quick approximation of the fractional square root?
How could that not be possible?

PS note that ##(\frac{100}{99})^{1/2} = (\frac{99}{100})^{-1/2}##
 
  • Like
Likes   Reactions: docnet and vcsharp2003
PeroK said:
How could that not be possible?
That might be easier. I will try expanding the binomial expression on RHS in equation below and maybe take only the first two terms.

$$\sqrt{\frac{100}{99}} = {(1 +\frac{1}{99})}^{\frac{1}{2}}$$
 
vcsharp2003 said:
That might be easier. I will try expanding the binomial expression below and maybe take only the first two terms.

$${(1 +\frac{1}{99})}^{\frac{1}{2}}$$
Okay, but see above for a useful idea.
 
  • Like
Likes   Reactions: docnet
PeroK said:
Okay, but see above for a useful idea.
I saw your last post. Once I get ##(\frac{99}{100})^{-1/2}##, then how would I proceed?
 
vcsharp2003 said:
I saw your last post. Once I get ##(\frac{99}{100})^{-1/2}##, then how would I proceed?
Use the binomial theorem. This time you have ##(1 - 0.01)^{-1/2}##
 
  • Like
Likes   Reactions: docnet and vcsharp2003
Of course, you could always approximate ##\frac 1 {99} \approx 0.01##, but inverting the fraction feels neater to me.
 
  • Like
Likes   Reactions: docnet and vcsharp2003
  • #10
PeroK said:
Of course, you could always approximate ##\frac 1 {99} \approx 0.01##, but inverting the fraction feels neater to me.
Yes, that's more easier than what I suggested since getting integer powers of .01 is very easy as opposed to getting integer powers of ##\frac{1}{99}##. After taking only first two terms of binomial expansion I get an approximation of 1.005.

$$\sqrt{\frac{100}{99}} = (1 - 0.01)^{-1/2} \approx 1.005$$

First two terms of binomial expression are obtained as below.
$$ (1 - 0.01)^{-1/2} = 1^{-\frac{1}{2}} + (-\frac{1}{2}) 1^ {(-\frac{1}{2} - 1)} (-.01)^1 + \frac{(-\frac{1}{2}) (-\frac{1}{2} -1)}{(1)(2)} 1^ {(-\frac{1}{2} - 2)} (-.01)^2 + ...$$

Taking the first two terms in binomial expression since the terms starting from third term are going to very small ( even smaller than .0001) we get ##1+.005 = 1.005## which seems correct. My initial approximation of .995 was not correct.
 
Last edited:
  • #11
vcsharp2003 said:
Yes, that's more easier than what I suggested since getting integer powers of .01 is very easy as opposed to getting integer powers of 199. After taking only first two terms of binomial expansion I get an approximation of 0.995.

10099=(1−0.01)−1/2≈.995
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
 
  • Like
Likes   Reactions: docnet
  • #12
PeroK said:
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
You are correct. I have edited my last post to reflect this. Thanks.
 
  • #13
PeroK said:
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
Your formulas are awesome. I can memorize these formulas for quicker calculations and not even bother to use Binomial expansion. Thanks.
 
  • #14
vcsharp2003 said:
Yes, that's more easier than what I suggested since getting integer powers of .01 is very easy as opposed to getting integer powers of ##\frac{1}{99}##. After taking only first two terms of binomial expansion I get an approximation of 0.995.

$$\sqrt{\frac{100}{99}} = (1 - 0.01)^{-1/2} \approx .995$$

First two terms of binomial expression are obtained as below.
$$ (1 - 0.01)^{-1/2} = 1^{-\frac{1}{2}} + (-\frac{1}{2}) 1^ {(-\frac{1}{2} - 1)} (-.01)^1 + \frac{(-\frac{1}{2}) (-\frac{1}{2} -1)}{(1)(2)} 1^ {(-\frac{1}{2} - 2)} (-.01)^2 + ...$$

Taking the first two terms in binomial expression since the terms starting from third term are going to very small ( even smaller than .0001) we get ##1+.005 = 1.005## which seems correct.
The usual binomial expansion has a ##1## in the first position. I would always take the factor out first. E.g.
$$(a + \epsilon)^{1/2} = a^{1/2}(1 + \frac{\epsilon}{a})^{1/2}$$ In any case, if you already have ##1## here then: $$(1 + \epsilon)^{1/2} = 1 + \frac 1 2 \epsilon + \frac{1}{2!}(\frac 1 2)(-\frac 1 2)\epsilon^2 + \frac{1}{3!}(\frac 1 2)(-\frac 1 2)(-\frac 3 2)\epsilon^3 \dots$$ Also, to avoid missing minus signs, I would tend to do: $$(1 - \epsilon)^{1/2} = (1 + (-\epsilon))^{1/2} = 1 + \frac 1 2 (-\epsilon) + \frac{1}{2!}(\frac 1 2)(-\frac 1 2)(-\epsilon)^2 + \frac{1}{3!}(\frac 1 2)(-\frac 1 2)(-\frac 3 2)(-\epsilon)^3 \dots$$
 
  • Like
Likes   Reactions: docnet and vcsharp2003
  • #15
PeroK said:
That can't be right. The answer must be greater than ##1##.

In general $$(1 \pm \epsilon)^{1/2} \approx 1 \pm \frac 1 2 \epsilon$$ and $$(1 \pm \epsilon)^{-1/2} \approx 1 \mp \frac 1 2 \epsilon$$
I think these approximation formulas are only valid if ##\epsilon## is very small i.e. as close to 0 as possible on the real number line. Is that correct?
 
  • #16
vcsharp2003 said:
I think these approximation formulas are only valid if ##\epsilon## is very small i.e. as close to 0 as possible on the real number line. Is that correct?
Yes, that's why I used ##\epsilon##. The series converges for any ##-1 < \epsilon < 1##, but it's only useful as an approximation for small ##\epsilon##.
 
  • Like
Likes   Reactions: docnet and vcsharp2003

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
6K
Replies
1
Views
2K