MHB Determine all real valued differentiable functions f(x)+f(y)=f(xy)

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine, with proof, all the real-valued differentiable functions $f$, defined
for real $x > 0$, which satisfy $f(x) + f(y) = f(xy)$ for all $x, y > 0$.
 
Mathematics news on Phys.org
The first thing I would notice is that, taking y= 0, f(x)+ f(0)= f(0) so that f(x)= 0 for all x.
 
because f(xy) = f(x) + f(y) and defined for x, y >0 I see a log function $f(x) =m\log\,x$ satisfies criteria where m is arbitrary constant. m= 0 gives above solution(post #2)
 
lfdahl said:
Determine, with proof, all the real-valued differentiable functions $f$, defined
for real $x > 0$, which satisfy $f(x) + f(y) = f(xy)$ for all $x, y > 0$.
[sp]With $x=y=1$, $f(1) + f(1) = f(1)$, from which $f(1) = 0$.

Fix $y$, and differentiate the equation $f(x) + f(y) = f(xy)$ with respect to $x$: $f'(x) = yf'(xy)$. Therefore $xf'(x) = xyf'(xy)$.

Now let $z = xy$, so that $xf'(x) = zf'(z)$. Since that is true for all positive numbers $x$ and $z$, it follows that $xf'(x)$ is constant, say $xf'(x) = c$. Then $f'(x) = \dfrac cx$, so we can integrate to get $f(x) = c\ln x + d$ (where $d$ is another constant). But $f(1) = 0$, so that $d=0$. Thus $f(x) = c\ln x$, and those are the only solutions.[/sp]
 
kaliprasad said:
because f(xy) = f(x) + f(y) and defined for x, y >0 I see a log function $f(x) =m\log\,x$ satisfies criteria where m is arbitrary constant. m= 0 gives above solution(post #2)
Hi, kaliprasad!
Your intuitive solution is correct indeed! Thanks for participating!

- - - Updated - - -

Opalg said:
[sp]With $x=y=1$, $f(1) + f(1) = f(1)$, from which $f(1) = 0$.

Fix $y$, and differentiate the equation $f(x) + f(y) = f(xy)$ with respect to $x$: $f'(x) = yf'(xy)$. Therefore $xf'(x) = xyf'(xy)$.

Now let $z = xy$, so that $xf'(x) = zf'(z)$. Since that is true for all positive numbers $x$ and $z$, it follows that $xf'(x)$ is constant, say $xf'(x) = c$. Then $f'(x) = \dfrac cx$, so we can integrate to get $f(x) = c\ln x + d$ (where $d$ is another constant). But $f(1) = 0$, so that $d=0$. Thus $f(x) = c\ln x$, and those are the only solutions.[/sp]

Thanks, Opalg! for your participation. Your solution is - of course - correct!(Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top