MHB Determine all real valued differentiable functions f(x)+f(y)=f(xy)

Click For Summary
The discussion focuses on finding all real-valued differentiable functions f defined for x > 0 that satisfy the equation f(x) + f(y) = f(xy) for all x, y > 0. By setting x = y = 1, it is established that f(1) = 0. Differentiating the equation with respect to x leads to the conclusion that xf'(x) is constant, allowing for the integration to yield f(x) = c ln x + d. Given that f(1) = 0, it follows that d must equal 0, resulting in the final solution f(x) = c ln x. These functions are the only solutions to the problem.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine, with proof, all the real-valued differentiable functions $f$, defined
for real $x > 0$, which satisfy $f(x) + f(y) = f(xy)$ for all $x, y > 0$.
 
Mathematics news on Phys.org
The first thing I would notice is that, taking y= 0, f(x)+ f(0)= f(0) so that f(x)= 0 for all x.
 
because f(xy) = f(x) + f(y) and defined for x, y >0 I see a log function $f(x) =m\log\,x$ satisfies criteria where m is arbitrary constant. m= 0 gives above solution(post #2)
 
lfdahl said:
Determine, with proof, all the real-valued differentiable functions $f$, defined
for real $x > 0$, which satisfy $f(x) + f(y) = f(xy)$ for all $x, y > 0$.
[sp]With $x=y=1$, $f(1) + f(1) = f(1)$, from which $f(1) = 0$.

Fix $y$, and differentiate the equation $f(x) + f(y) = f(xy)$ with respect to $x$: $f'(x) = yf'(xy)$. Therefore $xf'(x) = xyf'(xy)$.

Now let $z = xy$, so that $xf'(x) = zf'(z)$. Since that is true for all positive numbers $x$ and $z$, it follows that $xf'(x)$ is constant, say $xf'(x) = c$. Then $f'(x) = \dfrac cx$, so we can integrate to get $f(x) = c\ln x + d$ (where $d$ is another constant). But $f(1) = 0$, so that $d=0$. Thus $f(x) = c\ln x$, and those are the only solutions.[/sp]
 
kaliprasad said:
because f(xy) = f(x) + f(y) and defined for x, y >0 I see a log function $f(x) =m\log\,x$ satisfies criteria where m is arbitrary constant. m= 0 gives above solution(post #2)
Hi, kaliprasad!
Your intuitive solution is correct indeed! Thanks for participating!

- - - Updated - - -

Opalg said:
[sp]With $x=y=1$, $f(1) + f(1) = f(1)$, from which $f(1) = 0$.

Fix $y$, and differentiate the equation $f(x) + f(y) = f(xy)$ with respect to $x$: $f'(x) = yf'(xy)$. Therefore $xf'(x) = xyf'(xy)$.

Now let $z = xy$, so that $xf'(x) = zf'(z)$. Since that is true for all positive numbers $x$ and $z$, it follows that $xf'(x)$ is constant, say $xf'(x) = c$. Then $f'(x) = \dfrac cx$, so we can integrate to get $f(x) = c\ln x + d$ (where $d$ is another constant). But $f(1) = 0$, so that $d=0$. Thus $f(x) = c\ln x$, and those are the only solutions.[/sp]

Thanks, Opalg! for your participation. Your solution is - of course - correct!(Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K