I Determine ## \beta ## as a function of ##\theta## linkage

AI Thread Summary
The discussion focuses on deriving the angle β as a function of θ for a specific linkage using trigonometric principles. The Law of Sines and Law of Cosines are applied to relate angles and sides of triangles formed within the linkage. A complex equation for sin(φ) is derived, which can be solved using the quadratic formula. An alternative approach is suggested, involving the use of a diagonal in the quadrilateral to simplify calculations through additional applications of the cosine and sine rules. Ultimately, a more elegant expression for β is achieved, demonstrating the importance of perspective in solving trigonometric problems.
erobz
Gold Member
Messages
4,442
Reaction score
1,839
I 've been trying find ##\beta## as a function of ##\theta## for this linkage. It's quite the trigonometric mess.

1676847859269.png

Start with the Law of Sines:

$$ \frac{\sin \beta}{x} = \frac{\sin \varphi}{R} \implies \boxed{ x = R \frac{\sin \beta}{\sin \varphi} \tag{1} }$$

Relating angles:

$$ \theta + \alpha + \varphi = \frac{\pi}{2} \implies \boxed{ \alpha = \frac{\pi}{2} -( \theta+\varphi) \tag{2} } $$

Applying Law of Cosines ( for each triangle):

$$ \boxed{ R^2 = w^2 + x^2 - 2 w x \cos \varphi \tag{3}}$$

$$ \boxed{ l^2 = r^2 + x^2 - 2 r x \cos \alpha \tag{4}}$$

Sub ##(1) \to (3)## to find ##\sin \varphi## in terms of ##\sin \beta##:

$$ \left( \left( R^2-w^2\right)^2+ 4 w^2 R^2 \sin^2 \beta \right) \sin^4 \varphi - \left( 2R^2\left(R^2-w^2\right) + 4 w^2 R^2 \right) \sin^2 \beta \sin^2 \varphi + R^4 \sin^4 \beta = 0 \tag{5} $$

Eq ##(5)## can be solved for ##\sin \varphi## using the quadratic formula with the substitution ## u = \sin^2 \varphi ##:

## a = \left( \left( R^2-w^2\right)^2+ 4 w^2 R^2 \sin^2 \beta \right) ##

## b = - \left( 2R^2\left(R^2-w^2\right) + 4 w^2 R^2 \right) \sin^2 \beta ##

##c = R^4 \sin^4 \beta##

It follows that:

$$ \boxed{ \sin \varphi = \sqrt{ \frac{-b \pm \sqrt{b^2 - 4ac} }{2a} } \tag{6} } $$

Now, if we return to ##(4)## substituting ##(1)## and the identity ##\cos \alpha = \sin ( \theta+ \varphi)##:

$$ l^2 = r^2 + \frac{R^2 \sin^2 \beta}{ \sin^2 \varphi}- 2 r \frac{R \sin \beta}{ \sin \varphi } \sin ( \theta + \varphi) $$

Then applying the sum-difference identity for ##\sin( \theta + \varphi )##:

$$\boxed{ l^2 = r^2 + \frac{R^2 \sin^2 \beta}{ \sin^2 \varphi}- 2 r \frac{R \sin \beta}{ \sin \varphi } \left( \sin \theta \cos \varphi + \cos \theta \sin \varphi \right) \tag{7} }$$

From this point I can use a similar trick as in ##5## to get a solution for either ##\sin \theta , \cos \theta ## in terms of ##\sin \beta ## and all the constants.

It's seeming to be a real mess. Is it really this complex of a function - Have I messed up?
 
Mathematics news on Phys.org
I think you may find it easier to solve if you draw the other diagonal of the quadrilateral instead of the one labelled x. That diagonal goes from the top of the yellow line r to the vertex of the angle ##\beta##. Call its length y.
Then, since you know the angle between r and w is ##\pi/2 - \theta## you can use the cosine rule for triangle r-y-w to get the length y in terms of ##r,w,\cos(\pi/2-\theta)##, ie ##r,w,\sin\theta##.
Next, use the sine rule for the same triangle to get the angle ##\gamma## in the bottom-right corner of that triangle. That forms part of the angle ##\beta##.
The other part of ##\beta## is the bottom-right angle of the triangle l-R-y. You now know all three sides of that triangle, so you can apply the cosine law to that bottom right angle to get an expression for it in terms of ##l,R,y##.

I don't know for sure that it's any less messy than what you had but since it really only has three steps: cosine rule, sine rule, cosine rule, I think it's likely to.
 
andrewkirk said:
I think you may find it easier to solve if you draw the other diagonal of the quadrilateral instead of the one labelled x. That diagonal goes from the top of the yellow line r to the vertex of the angle ##\beta##. Call its length y.
Then, since you know the angle between r and w is ##\pi/2 - \theta## you can use the cosine rule for triangle r-y-w to get the length y in terms of ##r,w,\cos(\pi/2-\theta)##, ie ##r,w,\sin\theta##.
Next, use the sine rule for the same triangle to get the angle ##\gamma## in the bottom-right corner of that triangle. That forms part of the angle ##\beta##.
The other part of ##\beta## is the bottom-right angle of the triangle l-R-y. You now know all three sides of that triangle, so you can apply the cosine law to that bottom right angle to get an expression for it in terms of ##l,R,y##.

I don't know for sure that it's any less messy than what you had but since it really only has three steps: cosine rule, sine rule, cosine rule, I think it's likely to.
Yeah, it does appear to be the elegant route:

$$ \beta = \arcsin\left( \frac{ r \cos \theta }{ \sqrt{ r^2+w^2-2rw \sin \theta} } \right) + \arccos\left( \frac{ r^2 +w^2+R^2-l^2-2rw \sin \theta }{ \sqrt{ r^2+w^2-2rw \sin \theta} } \right) $$

Simple change of perspective, dramatic effects...SMH. Thanks for the tip!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top