MHB Determine if the SERIES converges or DIVERGES(III)

  • Thread starter Thread starter shamieh
  • Start date Start date
  • Tags Tags
    Series
Click For Summary
The series $$\sum^{\infty}_{n = 1} \frac{\tan^{-1}n}{\sqrt{1 + n^2}}$$ was analyzed for convergence using the limit comparison test with $$b_n = \frac{1}{n}$$, leading to a limit of 1, indicating divergence. However, further examination revealed that as $$n$$ approaches infinity, $$\tan^{-1}(n)$$ approaches $$\frac{\pi}{2}$$, and the terms behave like $$\frac{1}{n}$$, suggesting divergence. A comparison was made with the integral $$\int_0^{\infty} \frac{1}{\sqrt{1+x^2}} \, dx$$, which converges, but the series itself diverges due to the incorrect application of the integral comparison. Ultimately, the conclusion is that the series diverges despite initial assumptions of convergence.
shamieh
Messages
538
Reaction score
0
More awesome series for you to help me with..

$$\sum^{\infty}_{n = 1} \frac{tan^{-1}n}{\sqrt{1 + n^2}}$$ =

So can i use a limit comparison test and let $$b_n$$ be $$\frac{1}{n}$$

and then use the limit comparison test and obtain 1 which is $$L > 0$$ so then since 1/n or $$b_n$$ diverges then I know that $$a_n$$ diverges by the limit comparison test ?I ended up with $$\frac{n}{\sqrt{n^2 + 1}} $$ as n --> $$\infty = 1$$
 
Physics news on Phys.org
shamieh said:
More awesome series for you to help me with..

$$\sum^{\infty}_{n = 1} \frac{tan^{-1}n}{\sqrt{1 + n^2}}$$ =

So can i use a limit comparison test and let $$b_n$$ be $$\frac{1}{n}$$

and then use the limit comparison test and obtain 1 which is $$L > 0$$ so then since 1/n or $$b_n$$ diverges then I know that $$a_n$$ diverges by the limit comparison test ?I ended up with $$\frac{n}{\sqrt{n^2 + 1}} $$ as n --> $$\infty = 1$$

I'd say that since $\displaystyle \begin{align*} \arctan{(n)} < \frac{\pi}{2} \end{align*}$ for all n, then we have

$\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{\arctan{(n)}}{\sqrt{1 + n^2 }}} < \sum_{n = 1}^{\infty}{\frac{\frac{\pi}{2}}{\sqrt{1 + n^2}}} = \frac{\pi}{2} \sum_{n = 1}^{\infty}{\frac{1}{\sqrt{1 + n^2}}} \end{align*}$

Now if we consider $\displaystyle \begin{align*} f(x) = \frac{1}{\sqrt{1 +x^2}} = \left( 1 + x^2 \right) ^{-\frac{1}{2}} \end{align*}$, we have $\displaystyle \begin{align*} f'(x) = 2x \left[ -\frac{1}{2} \left( 1 + x^2 \right) ^{-\frac{3}{2}} \right] = - \frac{x}{\left( 1 + x^2 \right) \sqrt{1 + x^2} } \end{align*}$

Since $\displaystyle \begin{align*} f'(x) < 0 \end{align*}$ for all $\displaystyle \begin{align*} x > 0 \end{align*}$, that means the function is decreasing, and that means that the integral $\displaystyle \begin{align*} \int_0^{\infty} { \frac{1}{\sqrt{1 + x^2}} \, dx} \end{align*}$ will be an overestimate for $\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{1 + n^2}} } \end{align*}$. So if this integral is convergent, so will be the sum.

$\displaystyle \begin{align*} \int_0^{\infty}{ \frac{1}{\sqrt{1 +x^2}} \, dx } &= \lim_{b \to \infty} { \int_0^b{ \frac{1}{\sqrt{1 + x^2}} \, dx } } \\ &= \lim_{b \to \infty}{ \left[ \arctan{(x)} \right]_0^b } \\ &= \lim_{b \to \infty}{ \left[ \arctan{(b)} - \arctan{(0)} \right] } \\ &= \lim_{b \to \infty}{ \left[ \arctan{(b)} - 0 \right] } \\ &= \lim_{b \to \infty} \left[ \arctan{(b)} \right] \\ &= \frac{\pi}{2} \end{align*}$

This integral is convergent, so $\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{1 + n^2}} } \end{align*}$ is convergent, and thus $\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{\arctan{(x)}}{\sqrt{1 + n^2}} } \end{align*}$ is also convergent by comparison.
 
Prove It said:
I'd say that since $\displaystyle \begin{align*} \arctan{(n)} < \frac{\pi}{2} \end{align*}$ for all n, then we have

...
This integral is convergent, so $\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{1 + n^2}} } \end{align*}$ is convergent, and thus $\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{\arctan{(x)}}{\sqrt{1 + n^2}} } \end{align*}$ is also convergent by comparison.

But the series is not convergent. As $$ n \to \infty$$ we have [math]\arctan(n) \to \pi/2[/math] and $$\frac{1}{\sqrt{1+n^2}} \sim \frac{1}{n}$$.

Hence for large $$n$$ the terms behave like $$\frac{\pi}{2n}$$ and so the series diverges.The problem is with your integral:

$$\int_0^b \frac{1}{\sqrt{1+x^2}} = \mathrm{asinh}\left( b\right) \ne \arctan(b)$$

.

.
 
Last edited:
zzephod said:
But the series is not convergent. As $$ n \to \infty$$ we have [math]\arctan(n) \to \pi/2[/math] and $$\frac{1}{\sqrt{1+n^2}} \sim \frac{1}{n}$$.

Hence for large $$n$$ the terms behave like $$1/n$$ and so the series diverges.The problem is with your integral:

$$\int_0^b \frac{1}{\sqrt{1+x^2}} = \mathrm{asinh}\left( b\right) \ne \arctan(b)$$

.

.

Oops, that's where my mistake is, thank you :)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
5K