Determine positive integer solutions

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary
SUMMARY

The forum discussion focuses on determining all triples of positive integers \(x, y, z\) that satisfy the equation \(x+y+z+xy+yz+xz=xyz+1\) under the condition \(z \geq y \geq x\). The problem emphasizes the importance of integer solutions and the relationships between the variables. Acknowledgment is given to user kaliprasad for their contributions to the discussion.

PREREQUISITES
  • Understanding of Diophantine equations
  • Familiarity with positive integer properties
  • Basic knowledge of inequalities
  • Experience with mathematical problem-solving techniques
NEXT STEPS
  • Explore methods for solving Diophantine equations
  • Research integer programming techniques
  • Study combinatorial number theory
  • Learn about inequalities in number theory
USEFUL FOR

Mathematicians, educators, students in advanced mathematics, and anyone interested in solving complex integer equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all triples of positive integers $x,\,y,\,z$ such that $z\ge y\ge x$ and $x+y+z+xy+yz+xz=xyz+1$.
 
Mathematics news on Phys.org
anemone said:
Determine all triples of positive integers $x,\,y,\,z$ such that $z\ge y\ge x$ and $x+y+z+xy+yz+xz=xyz+1$.

add $1 + xyz$ on both sides to get $(1+x)(1+y)(1+z) = 2(1+xyz)$

for upper bound on x letting $x =y = z$ we get $(1+x)^3 =2(1+x^3)=> x <4$

so we need to check for 3 cases $x = 1, 2 , 3$

$x=1 => 2(1+y)(1+z) = 2(1+yz) => 1+y+z + yz = 1 + yz=> y+ z = 0$ or no solution$x=2=> 3(1+y)(1+z) = 2(1+2yz)$
or $3 + 3y + 3z+ 3yz = 2 + 4yz$
or $ yz-3y-3z =1$
or $(y-3)(z-3) = 10$
giving one solution $z-3=10,y-3=1=> z = 13,y=4$
or another solution $z-3 = 5,y-3 =2 => z= 8,y = 5$

$x=3=> 4(1+y)(1+z) = 2(1+3yz)$
or $4 + 4y + 4z + 4yz = 2 + 6yz$
or $ yz - 2y - 2z = 1$
or $(y-2)(z-2) = 5$ giving $z-2=5, y-2 = 1$ or $z = 7, y = 3$

so 3 sets of solution $(x,y,z) = (2,5,8),(2,4,13),(3,3,7)$
 
Last edited:
Well done kaliprasad! :cool:
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K