MHB Determine the Average Rate of Change

Click For Summary
The average rate of change (AROC) of the function y = 2cos(x - π/3) + 1 over the interval π/3 ≤ x ≤ π/2 was initially calculated incorrectly, yielding an approximate value of 1.4. Upon further analysis, the correct AROC was determined to be approximately -0.5117 after identifying errors in the calculations. The discrepancy was clarified by graphing the function and analyzing the secant line. This highlights the importance of careful computation and verification in determining the AROC. The final correct value reflects the function's behavior over the specified interval.
eleventhxhour
Messages
73
Reaction score
0
Determine the average rate if change of the function y = 2cos(x - $\pi$/3) + 1 for the interval $\pi$/3 $\le$ x $\le$ $\pi$/2

I tried finding the exact values of the two (0 and 0.5) and subbing them into the AROC equation but I keep getting the wrong answer (1.4)
 
Mathematics news on Phys.org
We find:

$$\frac{\Delta y}{\Delta x}=\frac{y\left(\dfrac{\pi}{2}\right)-y\left(\dfrac{\pi}{3}\right)}{\dfrac{\pi}{2}-\dfrac{\pi}{3}}=\frac{\left(2\cos\left(\dfrac{\pi}{6}\right)+1\right)-\left(2\cos\left(0\right)+1\right)}{\dfrac{\pi}{6}}=\frac{6\left(\sqrt{3}-1\right)}{\pi}\approx1.39811405542801$$
 
MarkFL said:
We find:

$$\frac{\Delta y}{\Delta x}=\frac{y\left(\dfrac{\pi}{2}\right)-y\left(\dfrac{\pi}{3}\right)}{\dfrac{\pi}{2}-\dfrac{\pi}{3}}=\frac{\left(2\cos\left(\dfrac{\pi}{6}\right)+1\right)-\left(2\cos\left(0\right)+1\right)}{\dfrac{\pi}{6}}=\frac{6\left(\sqrt{3}-1\right)}{\pi}\approx1.39811405542801$$

Okay, that's what I got. The textbook has it as -0.5157 so I guess it's just wrong?
 
We both made an error...it should be:

$$\frac{\Delta y}{\Delta x}=\frac{6\left(\sqrt{3}-2\right)}{\pi}\approx-0.511745261674736$$

I discovered my error when graphing the function and the resulting secant line:

View attachment 3547
 

Attachments

  • aroc.png
    aroc.png
    13.9 KB · Views: 99
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K