Determine the moment of inertia of a bar and disk assembly

AI Thread Summary
The discussion focuses on calculating the moment of inertia for a bar and disk assembly, with a target answer of 0.430 kg·m². The user initially attempts to use formulas for the moment of inertia of a compound pendulum but arrives at an incorrect value of 2.61 kg·m². Corrections are suggested regarding the application of the parallel axis theorem and the proper definitions of variables, particularly the length of the rod versus the pendulum. The importance of correctly identifying the mass center and applying the parallel axis theorem in reverse is emphasized. The user acknowledges the corrections and plans to adjust their calculations accordingly.
TheBigDig
Messages
65
Reaction score
2
Homework Statement
A homogeneous 3kg rod is welded to a homogeneous 2kg disc. Determine it's moment of inertia about the axis L which passes through the object's centre of mass. L is perpendicular to the bar and the disk.
Relevant Equations
## I_x = \int y^2\mathrm{d}A ##
## I_y = \int x^2\mathrm{d}A ##
Q.PNG

I have been given an answer for this but I am struggling to get to that point
$$ANS = 0.430\, kg \cdot m^2$$

So I thought using the moment of inertia of a compound pendulum might work where ##I_{rod} = \frac{ml^2}{12}## and ##I_{disc} = \frac{mR^2}{2}## (##l## is the length of the rod and ##R## is the radius of the disc)
$$ I_P = I_{rod} + M_{rod} \bigg( \frac{S}{2} \bigg)^2 + I_{disc} + M_{disc} (S+R)^2$$
where S is the length of the pendulum

$$ I_P = 0.09 + 1.2 + 0.04 + 2 = 2.61\, kg \cdot m^2$$
Much too large for my purposes.
Not really sure where to go after this. Any help is appreciated.
 
Last edited:
Physics news on Phys.org
It looks like you are defining P as the free end of the rod and applying the parallel axis theorem. You forgot to square the L/2, but maybe that's just a typo in writing the thread. And you wrote that your L is the length of "the pendulum', but you mean the length of the rod. It is rather confusing that you switched from the given "l" to "L", when L was already defined as an axis.

Anyway, you are asked for the moment about the mass centre. To get that you need to find where that is and apply the parallel axis theorem in reverse.
 
haruspex said:
It looks like you are defining P as the free end of the rod and applying the parallel axis theorem. You forgot to square the L/2, but maybe that's just a typo in writing the thread. And you wrote that your L is the length of "the pendulum', but you mean the length of the rod. It is rather confusing that you switched from the given "l" to "L", when L was already defined as an axis.

Anyway, you are asked for the moment about the mass centre. To get that you need to find where that is and apply the parallel axis theorem in reverse.
Sorry about that, I changed the post to reflect your corrections. ##l## is for the length of the rod and S is the length of the pendulum now. Thanks for the advice. I'll try giving that a go
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top