Opalg said:
I very much like kaliprasad's idea of using the implication $x + y +z = 0 \ \Longrightarrow \ x^3 + y^3 + z^3 = 3xyz.$ So suppose that $$\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}} = n$$. Then $$(3+\sqrt{a})+ (3-\sqrt{a}) + (-n)^3 = 3(-n)\sqrt[3]{9-a}.$$ Therefore $\sqrt[3]{9-a} = \dfrac{n^3-6}{3n}$, and $a = 9 - \dfrac{(n^3-6)^3}{27n^3}.$
We are told that $a>0$, so we must have $\dfrac{(n^3-6)^3}{27n^3} < 9$. The function $f(x) = \dfrac{(x-6)^3}{27x}$ is always positive when $x<0$, and has a minimum value $9$ when $x=-3$. When $x>0$, $f(x)$ is an increasing function, and $f(24) = 9$. So the condition $f(n^3) < 9$ implies that $n^3>0$ and $n^3 < 24$. Thus the only integer solutions for $n$ are $n=1$ and $n=2.$
If $n=1$ then $a = 9 - \dfrac{(-5)^3}{27} = \dfrac{368}{27}$. If $n=2$ then $a = 9 - \dfrac1{27} = \dfrac{242}{27}.$ Those are the only two solutions for $a$.
Thanks
Opalg for participating and yes, the two values of $a$ that you found are correct, of course!(Sun)
My solution:
Let $$y=\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}$$ where $y$ is an integer and $a>0$.
Then we have
$$y^3=\left(\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}\right)^3$$
$$y^3=\left(3+\sqrt{a}\right)+3(3+\sqrt{a})^{\frac{1}{3}}(3-\sqrt{a})^{\frac{1}{3}}\left(\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}\right)+(3-\sqrt{a})$$
$$y^3=\left(3+\sqrt{a}\right)+3y\left((3+\sqrt{a})(3-\sqrt{a})\right)^{\frac{1}{3}}+(3-\sqrt{a})$$
$$y^3=\left(3+\sqrt{a}\right)+3y(9-a)^{\frac{1}{3}}+(3-\sqrt{a})$$
Rearrange the equation a bit and we get
$$y(y^2-3(9-a)^{\frac{1}{3}})=6$$
Since $y$ is an integer, we see that
$$y(y^2-3(9-a)^{\frac{1}{3}})
\stackrel{\text{or}}{=}1(6)\stackrel{\text{or}}{=}2(3)$$
If $y=1$, then $$1^2-3(9-a)^{\frac{1}{3}}=6\;\;\rightarrow a=\frac{368}{27}$$.
If $y=6$, then $$6^2-3(9-a)^{\frac{1}{3}}=6\;\;\rightarrow a=-\frac{42632}{27}$$.
If $y=2$, then $$2^2-3(9-a)^{\frac{1}{3}}=3\;\;\rightarrow a=\frac{242}{27}$$.
If $y=3$, then $$3^2-3(9-a)^{\frac{1}{3}}=2\;\;\rightarrow a=-\frac{100}{27}$$.
Since $a>0$, the only possible values of $a$ in this problem are $$a=\frac{368}{27}$$ and $$a=\frac{242}{27}$$.