MHB Determine the ratio of two angles in a triangle.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$ABC$$ be a triangle such that $$\frac{BC}{AB-BC}=\frac{AB+BC}{AC}$$.

Determine the ratio $$\frac{\angle A}{\angle C}$$.
 
Mathematics news on Phys.org
anemone said:
Let $$ABC$$ be a triangle such that $$\frac{BC}{AB-BC}=\frac{AB+BC}{AC}$$.

Determine the ratio $$\frac{\angle A}{\angle C}$$.
Write $a,\ b,\ c$ for the sides opposite the angles $A,\ B,\ C$ respectively. You are told that $\dfrac a{c-a} = \dfrac{c+a}b$, so that $ab = c^2-a^2$. The cosine rule tells you that $c^2 = a^2+b^2-2ab\cos C$. Combining those equations, you get $ab = b^2 -2ab\cos C$, so that $a = b-2a\cos C$. Now draw a picture.

angles.png

The base of the isosceles triangle $BCD$ is twice the projection of $BC$ onto the side $CA$, namely $2a\cos C$. Therefore $DA = b-2a\cos C = a$. Thus $BDA$ is also isosceles, and it follows that $\angle C = \angle BDC = 2\angle A$.
 
Last edited:
Opalg said:
Write $a,\ b,\ c$ for the sides opposite the angles $A,\ B,\ C$ respectively. You are told that $\dfrac a{c-a} = \dfrac{c+a}b$, so that $ab = c^2-a^2$. The cosine rule tells you that $c^2 = a^2+b^2-2ab\cos C$. Combining those equations, you get $ab = b^2 -2ab\cos C$, so that $a = b-2a\cos C$. Now draw a picture.

angles.png

The base of the isosceles triangle $BCD$ is twice the projection of $BC$ onto the side $CA$, namely $2a\cos C$. Therefore $DA = b-2a\cos C = a$. Thus $BDA$ is also isosceles, and it follows that $\angle C = \angle BDC = 2\angle A$.

Awesome! :cool: I used a totally different method and yours is without a doubt, so much better than mine!

Thanks for showing me that we could actually solve a geometric problem using such a method and to be honest with you, I always love to read how you would approach a problem...:o

Thank you so much, Opalg!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top