MHB Determining one to one and finding formula for inverse help needed

  • Thread starter Thread starter Snicklefritz
  • Start date Start date
  • Tags Tags
    Formula Inverse
Click For Summary
The discussion revolves around determining whether the inverse function for f(x) = (5x - 3) / (2x - 1) has been correctly calculated. The proposed inverse, f^-1(x) = (x + 3) / (5 - 2x), is shown to be incorrect through a verification process involving the functional identity. The correct inverse is derived as f^-1(x) = (x - 3) / (2x - 5). Additionally, it is noted that if a function has an inverse, it is inherently one-to-one, eliminating the need for further checks on that aspect. The thread emphasizes the importance of clear examples in understanding mathematical concepts.
Snicklefritz
Messages
2
Reaction score
0
I have a problem I am trying to solve but no example provided can clarify the steps. I find this to be the problem with math examples, they provide problems but utilize same numbers so people who are not as math savvy such as I cannot figure the steps out as easily as they are provided. Anyway, enough complaining. My problem is determing one to one and also finding the inverse formula.

f(x)= 5x-3 over 2x-1

I am coming up with a final solution of f^-1(x)= x+3 over 5-2x

Is this right?
 
Mathematics news on Phys.org
Snicklefritz said:
I have a problem I am trying to solve but no example provided can clarify the steps. I find this to be the problem with math examples, they provide problems but utilize same numbers so people who are not as math savvy such as I cannot figure the steps out as easily as they are provided. Anyway, enough complaining. My problem is determing one to one and also finding the inverse formula.

f(x)= 5x-3 over 2x-1

I am coming up with a final solution of f^-1(x)= x+3 over 5-2x

Is this right?
Hi Snicklefritz, and welcome to MHB!

If you are given a function $y = f(x)$ then to get the inverse function you need to find $x$ in terms of $y$. So in this case, starting from $y = \dfrac{5x-3}{2x-1}$ you get $(2x-1)y = 5x-3$. Then rearrange that as $2xy - 5x = y - 3$, so that $x = \dfrac{y-3}{2y-5}.$ That tells you the inverse function as a function of $y$. If you want it as a function of $x$ then you simply replace the $y$s by $x$s, getting $f^{-1}(x) = \dfrac{x-3}{2x-5}$ – similar to what you had, but not quite the same. (Wondering)

If a function has an inverse then it is automatically one-to-one, so you don't need to do any further work there.
 
We are given:

$$f(x)=\frac{5x-3}{2x-1}$$

We can see this is a one-to-one function by observing:

$$f(x)=\frac{1}{2}\left(5-\frac{1}{2x-1}\right)$$

This is simply a transformation of the function:

$$g(x)=\frac{1}{x}$$

which we know to be one-to-one on its domain.

To check to see if you have found the correct inverse, we can use the functional identity:

$$f\left(f^{-1}(x)\right)=f^{-1}\left(f(x)\right)=x$$

So, using this, we find:

$$f\left(f^{-1}(x)\right)=\frac{5\left(\frac{x+3}{5-2x}\right)-3}{2\left(\frac{x+3}{5-2x}\right)-1}=\frac{5(x+3)-3(5-2x)}{2(x+2)-(5-2x)}=\frac{5x+15-15+6x}{2x+4-5+2x}=\frac{11x}{4x-1}\ne x$$

So, you can see you have not computed the inverse correctly.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K