MHB Determining the sin theta, tan theta and cos theta at P (x,y)

Click For Summary
To determine sin, cos, and tan values at point P(x, y) on the terminal arm of angle v, the correct formulas are sin(v) = y/√(x²+y²), cos(v) = x/√(x²+y²), and tan(v) = y/x. For point (3, 4), tan(v) is correctly calculated as 4/3, leading to an angle θ of approximately 53.13 degrees. The confusion arises from the distinction between finding the angle θ and calculating the trigonometric functions at that angle. The textbook's instructions were unclear, causing frustration with the online course. Accurate calculations of sin and cos at the specified points are essential for completing the task.
Tazook
Messages
3
Reaction score
0
Determine the values of sin v, cos v, and tan v at each point P(x, y) on the terminal arm of an angle v in standard position.
(b) (3, 4) ( (d) (12, 5)
(f) (7, 24)
for b I was able to do
tan \theta= y/x
tan \theta= 4/3
\theta = 53.13
My textbook says I am wrong... doing an online course... teacher is so lazy that she never posted how to do it but rather read txtbook pg... Did not help...
 
Mathematics news on Phys.org
Tazook said:
Determine the values of sin v, cos v, and tan v at each point P(x, y) on the terminal arm of an angle v in standard position.
(b) (3, 4) ( (d) (12, 5)
(f) (7, 24)
for b I was able to do
tan \theta= y/x
tan \theta= 4/3
\theta = 53.13
My textbook says I am wrong... doing an online course... teacher is so lazy that she never posted how to do it but rather read txtbook pg... Did not help...

$$\sin{\theta} = \frac{y}{\sqrt{x^2+y^2}}$$

$$\tan{\theta} = \frac{y}{x}$$

$$\cos{\theta} = \frac{x}{\sqrt{x^2+y^2}}$$
 
Tazook said:
Determine the values of sin v, cos v, and tan v at each point P(x, y) on the terminal arm of an angle v in standard position.
(b) (3, 4) ( (d) (12, 5)
(f) (7, 24)
for b I was able to do
tan \theta= y/x
tan \theta= 4/3
\theta = 53.13
My textbook says I am wrong... doing an online course... teacher is so lazy that she never posted how to do it but rather read txtbook pg... Did not help...

Ah -- I see your trouble here. What you have should be almost correct.

What skeeter recommended is what you (sort of) did.

You are right that $\theta = 53.13$ degrees.

But the question is not asking you to find $\theta$ but the values of $\sin \tan \cos$ at the value of $v = \theta$

In my point of view,

$\tan(\theta) = \frac{4}{3}$ is indeed correct because you correctly did

$\tan(\theta) = y/x$ but instead you took $\arctan(y/x)$ instead of giving $\tan(\theta)$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K