Given matrices in a vectorspace, how do you go about determining if they are independent or not?(adsbygoogle = window.adsbygoogle || []).push({});

Since elements in a given vectorspace (like matrices) are vector elements of the space, I think we'd solve this the same way as we've solved for vectors in R1 -- c1u1+ c2u2+ c3u3= 0. But I'm not sure I'm setting it up right. I assume that three 2x2 matrices in r2, for example: (a,b;c,d), (e,f; g,h), (i,j;k,l) where a semi-colon denotes a new line, would be set up like this:

a e i

b f j

c g k

d h l

Am I understanding this correctly?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Determining whether sets of matrices in a vectorspace are linearly independent?

Loading...

Similar Threads for Determining whether sets |
---|

I Span of a Set of Vectors |

B Why the hate on determinants? |

**Physics Forums | Science Articles, Homework Help, Discussion**