MHB Did I Calculate the Perimeter of A Sector Correctly?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Perimeter
AI Thread Summary
The discussion revolves around calculating the perimeter of a sector with a radius of 5 inches and an angle of 30°. The initial calculation yielded a perimeter of 10.05 inches, which was incorrect. The correct formula involves converting the angle to radians and applying it properly, resulting in a perimeter of 12.62 inches. The error was identified in the computation method used for the angle conversion. The final confirmation shows that the correct perimeter is indeed 12.62 inches.
mathdad
Messages
1,280
Reaction score
0
A sector has the following:

radius = 5 inches

angle = 30°

I was told to use the formula in the picture.

My answer is P = 10.05 inches.

The book's answer is P = 12.62 inches.

Am I using the right formula?

View attachment 7891
 

Attachments

  • sDraw_2018-03-02_01-42-29.png
    sDraw_2018-03-02_01-42-29.png
    9.9 KB · Views: 107
Mathematics news on Phys.org
RTCNTC said:
A sector has the following:

radius = 5 inches

angle = 30°

I was told to use the formula in the picture.

My answer is P = 10.05 inches.

The book's answer is P = 12.62 inches.

Am I using the right formula?

It looks like you have performed this computation: $(2 \pi / 360) (30)(2\pi / 360)(5) + (2)(5)$ instead of $(2 \pi / 360) (30)(5) + (2)(5)$

Remember: $\theta$ in degrees is equal to $\theta \cdot \dfrac{2\pi}{360}$ (or simply $\theta \cdot \dfrac{\pi}{180}$) in radians.
 
I converted 30° to radians before using the formula. This was my error.

P = (30/360) • (2π)(5) + 2(5)

P = (1/12)((10π) + 10

P = 12.62 inches

I got it.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top