MHB Did I Calculate the Perimeter of A Sector Correctly?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Perimeter
mathdad
Messages
1,280
Reaction score
0
A sector has the following:

radius = 5 inches

angle = 30°

I was told to use the formula in the picture.

My answer is P = 10.05 inches.

The book's answer is P = 12.62 inches.

Am I using the right formula?

View attachment 7891
 

Attachments

  • sDraw_2018-03-02_01-42-29.png
    sDraw_2018-03-02_01-42-29.png
    9.9 KB · Views: 102
Mathematics news on Phys.org
RTCNTC said:
A sector has the following:

radius = 5 inches

angle = 30°

I was told to use the formula in the picture.

My answer is P = 10.05 inches.

The book's answer is P = 12.62 inches.

Am I using the right formula?

It looks like you have performed this computation: $(2 \pi / 360) (30)(2\pi / 360)(5) + (2)(5)$ instead of $(2 \pi / 360) (30)(5) + (2)(5)$

Remember: $\theta$ in degrees is equal to $\theta \cdot \dfrac{2\pi}{360}$ (or simply $\theta \cdot \dfrac{\pi}{180}$) in radians.
 
I converted 30° to radians before using the formula. This was my error.

P = (30/360) • (2π)(5) + 2(5)

P = (1/12)((10π) + 10

P = 12.62 inches

I got it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top