Hi guys,(adsbygoogle = window.adsbygoogle || []).push({});

I know this should be obvious, but there's something I am just NOT getting.

Imagine a simple series RC circuit with a DC source as shown in the attachment. As can be seen from the picture, I have solved the differential equation in capacitor current in the time domain. In order to be able to solve the problem, I have assumed that dE/dt = 0 as this is a dc source.

What I wish to know is why can't I take the Laplace transform of both sides of the equation (*)? I know that L(0) = 0, so this would give a bogus equation (i.e. I(s) = 0, which is wrong). But if my equation (*) is right, then why can't I use the laplace transform of both sides at this point?

From textbooks, I read that the DC source is considered as a step input, thus in the Laplace domain, this would be E/s. So again, what is wrong with equation (*)? And why do I get the right answer at the end?

Again, as I said, I think this should be obvious, so please don't hesitate to point out trivialities.

Thanks for your understanding.

e.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Differential equation in simple RC-circuit

**Physics Forums | Science Articles, Homework Help, Discussion**