Differential Equation ODE Solution help.

Click For Summary
The discussion revolves around solving the ordinary differential equation (ODE) given by y(x+y+1)dx+(x+2y)dy=0. The solution process involves finding an integrating factor and confirming the exactness of the differential equation. The general solution derived is xye^x + y^2 * e^x + c = 0, with a focus on the constant c, which is determined to be a constant function. Participants suggest using implicit differentiation to verify the solution, successfully returning to the original differential equation. The conversation highlights the importance of confirming ODE solutions through differentiation techniques.
Physics345
Messages
250
Reaction score
23
Homework Statement
y(x+y+1)dx+(x+2y)dy=0
Relevant Equations
(My-Nx)/n
dM/dY = x+2y+1 dN/dx = 1

(My-Nx)/n = 1 Integrating Factor => e^∫1dx= e^x

(xye^x+ye^x+ye^x)dx + (xe^x+2ye^x)dy = 0

dM/dY =xye^x+e^x+2ye^x dN/dx = xye^x+e^x+2ye^x Exact

∫dF/dy * dy = ∫ (xe^x+2ye^x)dy

F = xy*e^x + y^2*e^x + c(x)

dF/dx = xy*e^x + y*e^x + y^2 * e^x + c'(x)

c'(x) = 0

c(x) = c

Therefore, the general solution to the ODE is xye^x + y^2 * e^x + c = 0

Did I miss something here? The doubt stems from c'(x) = 0

Is there any way I can confirm the answers to my ODE solutions?

Thanks for the help everyone.
 
Physics news on Phys.org
Physics345 said:
Problem Statement: y(x+y+1)dx+(x+2y)dy=0
Relevant Equations: (My-Nx)/n

dM/dY = x+2y+1 dN/dx = 1

(My-Nx)/n = 1 Integrating Factor => e^∫1dx= e^x

(xye^x+ye^x+ye^x)dx + (xe^x+2ye^x)dy = 0

dM/dY =xye^x+e^x+2ye^x dN/dx = xye^x+e^x+2ye^x Exact

∫dF/dy * dy = ∫ (xe^x+2ye^x)dy

F = xy*e^x + y^2*e^x + c(x)

dF/dx = xy*e^x + y*e^x + y^2 * e^x + c'(x)

c'(x) = 0

c(x) = c

Therefore, the general solution to the ODE is xye^x + y^2 * e^x + c = 0

Did I miss something here? The doubt stems from c'(x) = 0

Is there any way I can confirm the answers to my ODE solutions?

Thanks for the help everyone.
Differentiate your solution with respect to x, using implicit differentiation. Doing this, you're assuming that y is implicitly a function of x alone. When I did that, I was able to get back to your original differential equation.
 
  • Like
Likes Physics345
Mark44 said:
Differentiate your solution with respect to x, using implicit differentiation. Doing this, you're assuming that y is implicitly a function of x alone. When I did that, I was able to get back to your original differential equation.

xy*e^x + ye^x + xe^x * dy/dx + y^2 * e^x + 2ye^x * dy/dx = 0 divide by e^x

xy + y + x * dy/dx + y^2 + 2y * dy/dx = 0

y(y+x+1)dx + (x+2y)dy = 0

Genius! You're a lifesaver, thanks.
 
Even people who are not geniuses can do this and always should!
 
  • Like
  • Haha
Likes Mark44, Physics345 and DrClaude
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K