High School Differentiating Euler formula vs. multiplying by i

Click For Summary
Differentiating both sides of Euler's formula and multiplying by i yield results that are additive inverses of each other, leading to confusion. The correct form of Euler's formula is e^(ix) = cos(x) + i sin(x), which was misremembered in the initial discussion. The unit circle representation shows that e^(ix) corresponds to the coordinates (cos(x), sin(x)). Understanding this relationship clarifies the discrepancies in the calculations. Exploring different derivations, such as those using Taylor Series, can further enhance comprehension of Euler's formula.
ke7ijo
Messages
2
Reaction score
1
TL;DR
I ran into an apparent contradiction when working with Euler's formula and I can't find the mistake.
I differentiated both sides of Euler's formula with respect to x :
e^ix = sin x + i cos x => ie^ix = cos x - i sin x

Then for comparison I multiplied both sides of Euler's formula by i:
e^ix = sin x + i cos x => ie^ix = i sin x - cos x

Each of these two procedures seems to yield the additive inverse of the other, and I can't seem to figure out why even after a couple of hours of going back over it.
 
Physics news on Phys.org
ke7ijo said:
I differentiated both sides of Euler's formula with respect to x :
e^ix = sin x + i cos x
The mistake is that you have misremembered Euler's formula. The correct version is ##e^{ix} = \cos(x) + i\sin(x)##, which differs from what you wrote.

You can think of it this way. On the unit circle, with ##x## being the angle a ray makes with the horizontal axis, ##e^{ix}## represents the point on the unit circle. The coordinates of the point are ##(\cos(x), \sin(x))##. As a complex number, this point is ##\cos(x) + i\sin(x)##.
 
Thank you! That's it.
 
if you are mathematically curious, look at the different derivations of Euler's formula. My favorite is the one that uses Taylor Series.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K