Difficult double integration problem

  • Context: MHB 
  • Thread starter Thread starter fanttamdiv
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary

Discussion Overview

The discussion revolves around a double integral problem involving the evaluation of an integral with respect to two variables, x and y. Participants are exploring the differences in results obtained by different individuals when evaluating the same integral, considering various methods including potential transformations to polar coordinates.

Discussion Character

  • Debate/contested
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents a double integral and notes discrepancies in results when compared to a colleague, seeking to understand the source of the difference.
  • Another participant questions the assumptions about the relationship between the variables a, b, and c, suggesting that the integral may depend on whether \(c^2 + b^2\) equals, is less than, or exceeds \(a^2\).
  • Some participants propose transforming the integral into polar coordinates as a potential method for evaluation, detailing the steps involved in this transformation.
  • One participant provides a detailed calculation in polar coordinates, leading to a specific expression for the integral, and suggests that this approach yields a result that aligns with the colleague's answer.
  • Another participant expresses uncertainty about the relationships between the variables a, b, and c, indicating that they are independent and do not satisfy a specific geometric relationship.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct evaluation of the integral, with multiple competing views on the relationships between the variables and the methods of integration. Discrepancies in numerical results remain unresolved.

Contextual Notes

Participants note that the integral's evaluation may depend on specific assumptions about the variables involved, and there are unresolved mathematical steps in the proposed transformations and calculations.

fanttamdiv
Messages
5
Reaction score
0
I am getting a different answer from my colleague on the double integral below so I am trying to find out why. I am trying to put this into excel so I can play with the numbers and see the different results. The double integral is below:
View attachment 1496

So the first integration (with respect to y) yields me this:
​\[\int_{-c}^{c}\frac{(x^2*\sinh^{-1}{\frac{\sqrt{a^2-x^2}}{x}})-(b*\sqrt{x^2+b^2})+(a*\sqrt{a^2-x^2})-(x^2*\sinh^{-1}{\frac{b}{x}})}{2} dx\]
(Online calc input):
(.5)*(((x^2)*(arsinh((sqrt((a^2)-(x^2)))/x)))-(b*(sqrt((x^2)+(b^2))))+(a*(sqrt((a^2)-(x^2))))-((x^2)*(arsinh(b/x))))

Remember, I am putting this through excel so I am keeping the variables in there until the end. The second integration (with respect to x now) yields me this:
\[\frac{(-b^3*\sinh^{-1}{\frac{c}{b}})+(a^3*\sin^{-1}\frac{c}{a})-(bc*\sqrt{c^2+b^2})+(ac*\sqrt{a^2-c^2})}{2}\]
(Online calc input):
.5*(((-b^3)*(arsinh(c/b)))+((a^3)*(arcsin(c/a)))-((b*c)*(sqrt((c^2)+(b^2))))+((a*c)*(sqrt((a^2)-(c^2)))))

So now that I have this, I can use excel to plug in various variables and see how they affect my answer. The current variables I am using are:
a: 2
b: 1.2
c: 1

With the variables above, I am getting ~2.234. My colleague, however, is getting ~2.361. I do not have access to his work, and he seems confident in his answer (his answer makes more sense to me too based on some other details I haven't explained here). Basically I am bringing up this issue a couple years after he did the original problems and he isn't allotted any more time to work on this so I'm on my own. Is there something I am doing wrong? I don't think it is a rounding error as I have gotten the same answer with Excel and an online integration calculator. Also, I have tried to get this question answered on a different forum and it was suggested that I convert the integral to polar coordinates. It's been way too long since I took calculus and I don't know how to do this... Anyone think they can help do this/figure out why I'm getting a different answer?

Thanks
 

Attachments

  • DoubleIntegral.png
    DoubleIntegral.png
    1.5 KB · Views: 136
Physics news on Phys.org
I have a few comments:

1. Am I right in thinking your integral is
$$ \int_{-c}^{c} \int_{b}^{ \sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} \, dy \, dx?$$

2. If so, then may I ask whether your region in the $xy$ plane satisfies the relationship, in general, that $c^{2}+b^{2}=a^{2}$? Or is $c^{2}+b^{2}<a^{2}$? Or is $c^{2}+b^{2}>a^{2}$? (I should think the last option highly unlikely, as you will get complex numbers floating around!)

3. If we go on the assumption that $c^{2}+b^{2}=a^{2}$, then the integral becomes, in polar coordinates,
\begin{align*}
\int_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \int_{b \csc( \theta)}^{a}r^{2} \, dr \, d \theta &=
\int_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \left[ \frac{r^{3}}{3} \right]_{b \csc( \theta)}^{a} \, d \theta
\\
&= \frac{1}{3} \int_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \left[a^{3}-b^{3} \csc^{3}( \theta) \right] \, d \theta \\
&= \frac{1}{3} \Bigg[ a^{3} \theta-b^{3} \Bigg( - \frac{1}{4} \ln \left|1+ \cos( \theta) \right|+ \frac{1}{4} \ln \left|1- \cos( \theta) \right| \\
& \qquad - \frac{1}{4(1- \cos( \theta))}+ \frac{1}{4(1+ \cos( \theta))}\Bigg) \Bigg]_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \\
&= \frac{2}{3} \, a^{3} \arcsin(b/a).
\end{align*}
 
Ackbach said:
I have a few comments:

1. Am I right in thinking your integral is
$$ \int_{-c}^{c} \int_{b}^{ \sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} \, dy \, dx?$$

2. If so, then may I ask whether your region in the $xy$ plane satisfies the relationship, in general, that $c^{2}+b^{2}=a^{2}$? Or is $c^{2}+b^{2}<a^{2}$? Or is $c^{2}+b^{2}>a^{2}$? (I should think the last option highly unlikely, as you will get complex numbers floating around!)

3. If we go on the assumption that $c^{2}+b^{2}=a^{2}$, then the integral becomes, in polar coordinates,
\begin{align*}
\int_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \int_{b \csc( \theta)}^{a}r^{2} \, dr \, d \theta &=
\int_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \left[ \frac{r^{3}}{3} \right]_{b \csc( \theta)}^{a} \, d \theta
\\
&= \frac{1}{3} \int_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \left[a^{3}-b^{3} \csc^{3}( \theta) \right] \, d \theta \\
&= \frac{1}{3} \Bigg[ a^{3} \theta-b^{3} \Bigg( - \frac{1}{4} \ln \left|1+ \cos( \theta) \right|+ \frac{1}{4} \ln \left|1- \cos( \theta) \right| \\
& \qquad - \frac{1}{4(1- \cos( \theta))}+ \frac{1}{4(1+ \cos( \theta))}\Bigg) \Bigg]_{ \arcsin(-b/a)}^{ \arcsin(b/a)} \\
&= \frac{2}{3} \, a^{3} \arcsin(b/a).
\end{align*}

Thanks for taking the time to reply! Your first assumption is correct, that is the double integral I am working with. I am afraid variables a, b, and c are not related in any of the ways you mentioned, I'm not even sure if they have an absolute relationship. Just treat a, b, and c as independent variables. I have attached below a picture of what a, b, and c stand for so you can visualize the shape I am working with (ignore the other variables in yellow). This is part of a larger problem and I am fairly confident this double integral is the source of my error. EDIT: The picture in the attachment is wrong, the picture that is embedded is correct.

View attachment 1500

Also, I don't NEED it to be in polar coordinates, I just need a way to get an integrated solution that has variables I can change and see how it affects the final solution. Thanks for your help!
 

Attachments

  • Brake Pad Area (Shaded2).png
    Brake Pad Area (Shaded2).png
    3.3 KB · Views: 113
  • Brake Pad Area (Shaded2).png
    Brake Pad Area (Shaded2).png
    3.3 KB · Views: 128
Last edited:
fanttamdiv said:
I am getting a different answer from my colleague on the double integral below so I am trying to find out why. I am trying to put this into excel so I can play with the numbers and see the different results. The double integral is below:
View attachment 1496
...

I can use excel to plug in various variables and see how they affect my answer. The current variables I am using are:
a: 2
b: 1.2
c: 1

With the variables above, I am getting ~2.234. My colleague, however, is getting ~2.361.
As someone on another forum suggested, you can evaluate the integral $$\int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx$$ by transforming it to polar coordinates. You have to split it into two pieces, as in this diagram:


Let $d = \sqrt{b^2+c^2}$, $e = \sqrt{a^2-c^2}$, $\alpha = \arccos(b/d)$ and $\beta = \arcsin(c/a)$, as indicated in the diagram. Then $$\int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx = \int_b^d\int_{-\arccos(b/r)}^{\arccos(b/r)}r^2\,d\theta dr + \int_d^a\int_{-\arcsin(c/r)}^{\arcsin(c/r)}r^2\,d\theta dr.$$ The theta integrals are easy, and lead to $$\int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx = \int_b^d 2r^2\arccos(b/r)\,dr + \int_d^a 2r^2\arcsin(c/r)\,dr.$$ Those integrals are doable but not so quick. I'll spare you the details, but briefly what you have to do is to integrate by parts, then use the substitution $r = b\sec\varphi$ for the first integral and $r = c\csc\psi$ for the second one. The result comes out as $$\boxed{\displaystyle \int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx = \tfrac23a^3\beta + \tfrac13ace - \tfrac23bcd + \tfrac13c^3\ln\Bigl(\frac{d-b}{a-e}\Bigr) - \tfrac13b^3\ln\Bigl(\frac{c+d}{b}\Bigr)}.$$

Putting in the values $a=2$, $b=1.2$, $c=1$ (and remembering that $\beta$ must be measured in radians!), that formula gives the value of the integral as 2.361. So I'm sorry to say that it looks as though your colleague is right and you are wrong.
 

Attachments

  • template.png
    template.png
    6.1 KB · Views: 108
Last edited:
Opalg said:
As someone on another forum suggested, you can evaluate the integral $$\int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx$$ by transforming it to polar coordinates. You have to split it into two pieces, as in this diagram:


Let $d = \sqrt{b^2+c^2}$, $e = \sqrt{a^2-c^2}$, $\alpha = \arccos(b/d)$ and $\beta = \arcsin(c/a)$, as indicated in the diagram. Then $$\int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx = \int_b^d\int_{-\arccos(b/r)}^{\arccos(b/r)}r^2\,d\theta dr + \int_d^a\int_{-\arcsin(c/r)}^{\arcsin(c/r)}r^2\,d\theta dr.$$ The theta integrals are easy, and lead to $$\int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx = \int_b^d 2r^2\arccos(b/r)\,dr + \int_d^a 2r^2\arcsin(c/r)\,dr.$$ Those integrals are doable but not so quick. I'll spare you the details, but briefly what you have to do is to integrate by parts, then use the substitution $r = b\sec\varphi$ for the first integral and $r = c\csc\psi$ for the second one. The result comes out as $$\boxed{\displaystyle \int_{-c}^c\int_b^{\sqrt{a^2-x^2}}\sqrt{x^2+y^2}\,dydx = \tfrac23a^3\beta + \tfrac13ace - \tfrac23bcd + \tfrac13c^3\ln\Bigl(\frac{d-b}{a-e}\Bigr) - \tfrac13b^3\ln\Bigl(\frac{c+d}{b}\Bigr)}.$$

Putting in the values $a=2$, $b=1.2$, $c=1$ (and remembering that $\beta$ must be measured in radians!), that formula gives the value of the integral as 2.361. So I'm sorry to say that it looks as though your colleague is right and you are wrong.

Brilliant, exactly what I was looking for! Thank you very much!:D
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
566
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K