Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A Difficult partial differential Problem

  1. Dec 22, 2017 #1
    Problem:
    $${\frac {\partial }{\partial t}}A\left( y,t \right) +6\,\Lambda\,\Omega\, \left( {y}^{2}-y \right) \sin \left( t \right) ={\frac {\partial ^{2}}{\partial {y}^{2}}}A \left( y,t \right)$$
    $${\frac{\partial }{\partial y}}A \left( t,0 \right) ={\frac {\partial }{\partial y}}A \left( t,1 \right) =0$$
    Boundary condition
    $${\frac{\partial }{\partial y}}A \left( t,0 \right) ={\frac {\partial }{\partial y}}A \left( t,1 \right) =0$$
    ANSWER OF THIS EQUATION IS
    $$A \left( y,t \right) =6\,\Lambda\, \left( \Im \right) \, \left\{ [{\frac {i\sinh \left( \alpha\,y \right) }{\alpha}}-{\frac {i \left( 1-\cosh \left( \alpha \right) \right) \cosh \left( \alpha\,y \right) }{\alpha\,\sinh \left( \alpha \right) }}+i{y}^{2}-iy+2\,{\Omega}^{-1}]{{\rm e}^{it}} \right\}$$
    Where, $$\alpha=1/2\, \left( 1+i \right) \sqrt {2}\sqrt {\Omega}$$
    attempt at a solution

    Maple didn't give an answer. I don't know how to get this kind of solution.
    IMG_20171223_030037.jpg
     
  2. jcsd
  3. Dec 23, 2017 #2
  4. Dec 24, 2017 #3
    Thank you, sir. I got it. This thread can be closed now.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted