I have been struggling with a problem for a long time. I need to solve the second order partial differential equation
$$\frac{1}{G_{zx}}\frac{\partial ^2\phi (x,y)}{\partial^2 y}+\frac{1}{G_{zy}}\frac{\partial ^2\phi (x,y)}{\partial^2 x}=-2 \theta$$
where ##G_{zy}##, ##G_{zx}##, ##\theta##...
I am struggling to figure out how to approach this problem. I've only solved a homogenous heat equation $$u_t = u_{xx}$$ using a fourier transform, where I can take the fourier transform of both sides then solve the general solution in fourier terms then inverse transform. However, since this...
I am trying to determine an outer boundary condition for the following PDE at ##r=r_m##: $$ \frac{\sigma_I}{r} \frac{\partial}{\partial r} \left(r \frac{\partial z(r,t)}{\partial r} \right)=\rho_D gz(r,t)-p(r,t)-4 \mu_T \frac{\partial^2z(r,t)}{\partial r^2} \frac{\partial z(r,t)}{\partial t} $$...
Salutations,
I have been trying to approach a modelling case about organism propagation which reproducing with velocity $$\alpha$$ spreading randomly according these equations:
$$\frac{du(x,t)}{dt}=k\frac{d^2u}{dx^2} +\alpha u(x,t)\\\ \\ u(x,0)=\delta(x)\\\ \lim\limits_{x \to \pm\infty}...
While separating variables in the Schrodinger Equation for hydrogen atom, why are we taking separation constant to be l(l+1) instead of just l^2 or -l^2, is it just to make the angular equation in the form of Associated Legendre Equation or is there a deeper meaning to it?
Hello all
I am using the method of lines to solve the following PDE:
## \frac {\partial C} {\partial t} + F\frac {\partial q} {\partial t} + u \frac {dC} {dz} = D_{ax} \frac{\partial^2 C} {\partial z^2} ##
## \frac {\partial q} {\partial t} = k (q^{*}-q) ##
With these initial conditions:
##...
1. The problem statement, all variables, and given/known data
Given is a second order partial differential equation $$u_{xx} + 2u_{xy} + u_{yy}=0$$ which should be solved with change of variables, namely ##t = x## and ##z = x-y##.
2. Homework Equations
Chain rule $$\frac{dz}{dx} =...
1. The problem statement, all variables, and given/known data
Task requires you to solve a partial differential equation $$u_{xy}=2yu_x$$ for ##u(x,y)##. A hint is given that a partial differential equation can be solved in terms of ordinary differential equations.
According to the solution...
During solution of a PDE I came across following ODE
##
\frac{d \bar h}{dt} + \frac{K}{S_s} \alpha^2 \bar h = -\frac{K}{S_s} \alpha H h_b(t)
##
I have to solve this ODE which I have done using integrating factor using following steps
taking integrating factor I=\exp^{\int \frac{1}{D} \alpha^2...
1. Homework Statement
Considering the function $$f(x) = e^{-x}, x>0$$ and $$f(-x) = f(x)$$. I am trying to find the Fourier integral representation of f(x).
2. Homework Equations
$$f(x) = \int_0^\infty \left( A(\alpha)\cos\alpha x +B(\alpha) \sin\alpha x\right) d\alpha$$
$$A(\alpha) =...
In the following question I need to find the Fourier cosine series of the triangular wave formed by extending the function f(x) as a periodic function of period 2
$$f(x) = \begin{cases}
1+x,& -1\leq x \leq 0\\
1-x, & 0\leq x \leq 1\\\end{cases}$$
I just have a few questions then I will be able...
Hello, dear colleague. Now I'm dealing with issues of modeling processes of heat and mass transfer in frozen and thawed soils. I am solving this problems numerically using the finite volume method (do not confuse this method with the finite element method). I found your article: "Numerical...
Hello everybody.
Consider
$$\frac{\partial}{\partial t}f(x) + ax\frac{\partial }{\partial x}f(x) = b x^2\frac{\partial^2}{\partial x^2}f(x)$$
This is the equation (19) of...
Hello All,
I would like to convert a partial diff equation in time domain into frequency domain, however there is a term of the form:
Re(∇(E1.E2*) exp(j[ω][/0]t))
where E1 and E2 are the magnitudes of the electric field and [ω][/0] is the angular frequency.
Can someone please help me to...
Hello everybody. I'm about to take a final exam and i've just encountered with this exercise. I know it's simple, but i tried solving it by Separation of variables, but i couldn't reach the result Mathematica gave me. This is the equation:
∂u/∂x = ∂u/∂t
Plus i have a condition...
1. Homework Statement
Solve ut+3ux=0, where -infinity < x < infinity, t>0, and u(x,0)=f(x).
2. Homework Equations
Fourier Transform where (U=fourier transform of u)
Convolution Theorem
3. The Attempt at a Solution
I've used Fourier transform to get that Ut-3iwU=0 and that U=F(w)e3iwt...
Hi all,
I'm currently a second year Applied Maths and Physics student. I will be specialising in Experimental physics next year.
With this, I will have no more core (mandatory) mathematics modules.
So far, I have taken, Linear Algebra I, Calculus, Differential Equations, Linear Algebra II...
Hello everyone. So I wanted to get some opinions on what some of you thought was a better choice, as far taking PDE's or classical mechanics 2 goes. First let me start off by giving a little info; I've already taken calc 1-3 and ordinary differential equations, physics 1 & 2...
ρCp (∂T/∂t) + k (∂2T/∂x2) = exp(-σt2)exp(-λx2)φo
i have this equation... i was thinking of taylor series expansion to solve it and make it easier...
any ideas on how to solve?
1. Homework Statement
2. Homework Equations
3. The Attempt at a Solution
Because we are only looking at a cross section, I tried to reduce 5.3 down to just being a function of R and Theta. However I reasoned that there should be, based on this problem, no dependence on Theta either, so I...
1. Homework Statement
Graph snapshots of the solution in the x-u plane for various times t if
\begin{align*}
f(x) =
\begin{cases}
& 3, \text{if } -4 \leq x \leq 0 \\
& 2, \text{if } 4 \leq x \leq 8 \\
& 0, \text{otherwise}
\end{cases}
\end{align*}
2. Homework Equations
Assuming that c=1...
We know that modes of vibration of an Euler-Bernoulli beam are given by eigenfunctions, with the natural frequency of each mode being given by its eigenvalue. Thus these modes are all mutually orthogonal.
Can anything be said of the derivatives of these eigenfunctions? For example, I have the...
I need to solve the well known momentum equation in 3D cylindrical coordinates:
ρ(∂v/∂t +(v.∇)v)=A
where A and the velocity v are both local vector variables.
I am actually looking for the stationary solution to the equation, i.e. no ∂/∂t term)
I have tried evolving the velocity and tried...
I have a PDE which is the following:
$$\frac {\partial n}{\partial t} = -G\cdot\frac {\partial n}{\partial L}$$
with boundary condition: $$n(t,0,p) = \frac {B}{G}$$
, where G is a constant, L is length and t is time.
G and B depend on a set of parameters, something like $$B = k_1\cdot C^a$$...
I'm trying to understand the derivation for methods of Greens functions for PDEs but I can't get my head around some parts. I'm starting to feel comfortable with the method itself but I want to understand why it works.
The thing I have problem with is quite crucial and it is the following:
I...
1. Homework Statement
I have the solution to the heat equation, with the BC's and everything but the IC applied. So I am just trying to solve for the coefficients, the solution without the coefficients is
$$u(x,t) = \sum_{n=1}^{\infty} A_n\sin(nx)e^{-n^2t}$$
If the initial condition is ##u(x,0)...
1. Homework Statement
If you have the heat equation
$$u_{t}-u_{xx}=a \\ u(0,t)=b\\u(1,t)=c\\u(x,0)=d$$
Show that the solution to the above equation can be made up of a linear combination of solutions to
$$u_{t}-u_{xx}=a_i \\ u(0,t)=b_i\\u(1,t)=c_i\\u(x,0)=d_i$$
$$i=1,2,3,4$$
if the...
Hi guys,
I've distilled the 3D Diffusion Equation into the following PDE using Fourier spectral techniques:
∂C(m,n,p,t)/∂t + k(p^2+m^2+n^2)C(m,n,p,t)=0,
where C is the Fourier coefficient of the 3D Fourier transform, {m,n,p} are the spatial frequencies, and t is time. I've tried using a...