MHB Digit word problems -linear equation

  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
paulmdrdo1
Messages
382
Reaction score
0
can you please tell why my solutions here yield different answers

here's the problem,

Find two consecutive positive odd integers such that the difference of their squares is 64.

my first solution is

let $2x+1=$ smaller odd interger
$2x+3=$ larger odd integer

$(2x+3)^2-(2x+1)^2=64$

$x=9$

the numbers are 19 and 21.

my 2nd solution

let $x=$ smaller odd interger
$x+2=$ larger odd integer

$(x+2)^2-(x)^2=64$

$x=15$

the numbers are 15 and 17.

which solution method is correct?

thanks!
 
Mathematics news on Phys.org
paulmdrdo said:
$(2x+3)^2-(2x+1)^2=64$

$x=9$
This should be $x=7$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top