Dimension of terms in Lagrangian

  • Context: Graduate 
  • Thread starter Thread starter zaman786
  • Start date Start date
  • Tags Tags
    Dimension Lagrangian
Click For Summary

Discussion Overview

The discussion revolves around the dimensions of terms in the Lagrangian of the Standard Model (SM) of particle physics, specifically focusing on the mass dimensions of fields and operators. Participants explore how to measure these dimensions and the implications of introducing higher-dimensional operators in the context of effective field theory.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants assert that mass dimension is the only physical dimension left when using natural units, focusing on the dimension of field content and excluding constants.
  • It is proposed that the total mass dimension of the Lagrangian density should be 4 to ensure it integrates to a dimensionless action, with derivatives contributing a mass dimension of 1.
  • Examples are provided, such as the kinetic term for a real scalar field, where the mass dimension of the field is derived from the requirement that the term's dimension equals 4.
  • Some participants express confusion regarding the relationship between mass dimensions and the dimensions of length and time, questioning how mass dimension can be considered the only physical dimension.
  • There is a discussion about the allowance of dimension 5 operators in the SM, with some participants noting that the SM primarily contains dimension 4 operators, while effective field theory may introduce higher-dimensional operators with appropriate dimensional prefactors.
  • Participants clarify that introducing dimension 5 operators necessitates a dimensional prefactor to maintain the overall dimension of the action as dimensionless.

Areas of Agreement / Disagreement

Participants generally agree on the requirement for the Lagrangian density to have a total mass dimension of 4, but there is ongoing debate regarding the implications of introducing higher-dimensional operators and the necessity of dimensional prefactors. The discussion remains unresolved regarding the clarity of mass dimensions in relation to other physical dimensions.

Contextual Notes

Some statements rely on assumptions about the definitions of mass dimensions and the nature of effective field theories, which may not be universally accepted or fully explored in the discussion.

zaman786
Messages
31
Reaction score
6
TL;DR
what do we mean by dimensions of terms in lagrangian?
hi, when we say in SM , we can add terms having dimension 4 or less than that- in this to what dimension we are refering ? kindly help how do you measure the dimension of terms in Lagrangian. thanks
 
Physics news on Phys.org
Mass dimension, the only physical dimension left once you introduce natural units. And we are talking only about the dimension of the field content - excluding any dimension of constants.

To find the mass dimension of a field, look at its kinetic term, which contains derivatives and that field only. The total mass dimension of the Lagrange density should be 4 (or it would not integrate to a dimensionless action) and derivatives have mass dimension 1 (as length and time have mass dimension -1).
 
  • Like
Likes   Reactions: mfb
Example: The kinetic term for a real scalar field has the content ##(\partial \phi)^2##. If ##\phi## has mass dimension ##k##, then this term has mass dimension ##2(k+1)## where the 2 comes from the square and the 1 from the derivative. This needs to be equal to 4 so ##k =1##.
 
Orodruin said:
Mass dimension, the only physical dimension left once you introduce natural units. And we are talking only about the dimension of the field content - excluding any dimension of constants.

To find the mass dimension of a field, look at its kinetic term, which contains derivatives and that field only. The total mass dimension of the Lagrange density should be 4 (or it would not integrate to a dimensionless action) and derivatives have mass dimension 1 (as length and time have mass dimension -1).
thanks - but length and time has dimension of -1 , so how can we say Mass dimension is the only physical dimension left?
 
Orodruin said:
Example: The kinetic term for a real scalar field has the content ##(\partial \phi)^2##. If ##\phi## has mass dimension ##k##, then this term has mass dimension ##2(k+1)## where the 2 comes from the square and the 1 from the derivative. This needs to be equal to 4 so ##k =1##.
got it - thanks
 
(∂φ)2 has mass dimension 4.
 
dx said:
(∂φ)2 has mass dimension 4.
Yes, what is your point?

The thing is that you know it needs to be 4 in order to have the right mass dimension of the Lagrange density. The question of the OP was how you deduce the mass dimension of the fields. If the field has mass dimension k, then that term has mass dimension 2(k+1) = 4 from which it can be concluded that k = 1.
 
zaman786 said:
thanks - but length and time has dimension of -1 , so how can we say Mass dimension is the only physical dimension left?
Yes, length and time have mass dimension -1. They do not have independent dimensions as in SI units.
 
Recall that action, ##\int d^4 x\,\cal{L}##, should be dimensionless.
 
  • #10
apostolosdt said:
Recall that action, ##\int d^4 x\,\cal{L}##, should be dimensionless.
Literally what I already said …
Orodruin said:
integrate to a dimensionless action
 
  • #11
Sorry, I was referring to the OP. You indeed mentioned it first.
 
  • #12
Orodruin said:
Yes, length and time have mass dimension -1. They do not have independent dimensions as in SI units.
got it- thanks
 
  • #13
apostolosdt said:
Sorry, I was referring to the OP. You indeed mentioned it first.
now, in SM Lagrangian terms has dimension 4 - than how do we allow dimension 5 operator in SM , i know it is some what related as perturbation to SM.
 
  • #14
zaman786 said:
now, in SM Lagrangian terms has dimension 4 - than how do we allow dimension 5 operator in SM , i know it is some what related as perturbation to SM.
The SM as such has only d=4 operators. If you do SM effective field theory you will typically add operators of higher dimension. In the Lagrangian these will be accompanied by a dimensional prefactor, typically assumed to be the mass scale of new physics to an appropriate power.
 
  • Like
Likes   Reactions: zaman786
  • #15
zaman786 said:
now, in SM Lagrangian terms has dimension 4 - than how do we allow dimension 5 operator in SM , i know it is some what related as perturbation to SM.
 
  • #16
Orodruin said:
The SM as such has only d=4 operators. If you do SM effective field theory you will typically add operators of higher dimension. In the Lagrangian these will be accompanied by a dimensional prefactor, typically assumed to be the mass scale of new physics to an appropriate power.
thanks - but as say action should be dimensionless - so if we introduce dimension 5 operator , than do we have to introduce dimensional prefactor - so that overall dimension remains to be 4 ?
 
  • #17
zaman786 said:
thanks - but as say action should be dimensionless - so if we introduce dimension 5 operator , than do we have to introduce dimensional prefactor - so that overall dimension remains to be 4 ?
Yes, that is what I said. This prefactor is typically assumed to be a power of the scale of the new physics related to the effective operator.
 
  • #18
Orodruin said:
Yes, that is what I said. This prefactor is typically assumed to be a power of the scale of the new physics related to the effective operator.
thanks a lot
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K