Dipole Moment of a Hollow Sphere, simplify calculation

  • Thread starter Thread starter LeoJakob
  • Start date Start date
  • Tags Tags
    Dipole Sphere
Click For Summary
The discussion focuses on the calculation of the dipole moment of a hollow sphere, highlighting the complexity involved due to the inhomogeneous charge distribution. The user initially assumed that the dipole moment would only point in the z-direction due to symmetry but found that the calculation required a triple integral. Ultimately, the result confirmed that the dipole moment has only a z-component, leading to questions about whether a simpler approach could have been used. The conversation also clarifies that the charge is only present on the surface and that the cancellation of components in the xy-plane is due to the symmetry of the problem. The realization that the delta function simplifies the calculation process is acknowledged.
LeoJakob
Messages
24
Reaction score
2
Homework Statement
Consider the non-uniformly charged hollow sphere with radius ##R## and charge density##
\rho(\vec{r})=\rho_{0} \cos \theta \delta(r-R) .##
Calculate the dipole moment ##\vec{p}##
Relevant Equations
##
\vec{p}=\int \vec{r} \rho(\vec{r})\mathrm{d}^{3} r .
##
is there an easier way to calculate the dipole moment? I described ## \vec r## in spherical coordinates. I thought at first that due to the symmetry I can assume that dipole-moment only points in the ##z##-direction, but the charge distribution is inhomogeneous, so I made the following calculation:
My calculation results in $$\vec{p}=\int \vec{r} \rho(\vec{r}) \mathrm{d}^{3} r=\int \limits_{0}^{2 \pi} \int \limits_{0}^{\pi} \int \limits_{0}^{\infty} R\left(\sin \theta \cos \phi \vec{e}_{x}+\sin \theta \sin \phi \vec{e}_{y}+\cos \theta \vec{e}_{z}\right)r^{2} \cdot \delta(r-R) \rho_{0} \sin \theta \cos \theta d r d \theta d \phi =\frac{4}{3} \rho_{0} R^{3} \overrightarrow{e_{z}}$$

Which is the correct result but the calculation of the integrals took quite some time. In the end I realized that the dipole moment,indeed, only has a ##z##-component, could I have recognized this earlier and thus simplified my calculation? I'm unsure because the charge density is not homogenous.
 
Physics news on Phys.org
Weird, I would think that it was only necessary to do a double integral instead of a triple integral to calculate the dipole moment of this specific distribution. My interpretation is that there is only charge on the surface. Ah I see you used the delta function never mind.


I presume ##\theta## refers to the polar angle. ##\cos \theta## is even about the ## z-axis##. If you go ##\theta## clockwise from the z-axis and ##\theta## counterclockwise from the z-axis , draw the vectors, you will see the components in the xy-plane cancel out.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 5 ·
Replies
5
Views
352
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K