Dipole Moment of a Hollow Sphere, simplify calculation

  • Thread starter Thread starter LeoJakob
  • Start date Start date
  • Tags Tags
    Dipole Sphere
LeoJakob
Messages
24
Reaction score
2
Homework Statement
Consider the non-uniformly charged hollow sphere with radius ##R## and charge density##
\rho(\vec{r})=\rho_{0} \cos \theta \delta(r-R) .##
Calculate the dipole moment ##\vec{p}##
Relevant Equations
##
\vec{p}=\int \vec{r} \rho(\vec{r})\mathrm{d}^{3} r .
##
is there an easier way to calculate the dipole moment? I described ## \vec r## in spherical coordinates. I thought at first that due to the symmetry I can assume that dipole-moment only points in the ##z##-direction, but the charge distribution is inhomogeneous, so I made the following calculation:
My calculation results in $$\vec{p}=\int \vec{r} \rho(\vec{r}) \mathrm{d}^{3} r=\int \limits_{0}^{2 \pi} \int \limits_{0}^{\pi} \int \limits_{0}^{\infty} R\left(\sin \theta \cos \phi \vec{e}_{x}+\sin \theta \sin \phi \vec{e}_{y}+\cos \theta \vec{e}_{z}\right)r^{2} \cdot \delta(r-R) \rho_{0} \sin \theta \cos \theta d r d \theta d \phi =\frac{4}{3} \rho_{0} R^{3} \overrightarrow{e_{z}}$$

Which is the correct result but the calculation of the integrals took quite some time. In the end I realized that the dipole moment,indeed, only has a ##z##-component, could I have recognized this earlier and thus simplified my calculation? I'm unsure because the charge density is not homogenous.
 
Physics news on Phys.org
Weird, I would think that it was only necessary to do a double integral instead of a triple integral to calculate the dipole moment of this specific distribution. My interpretation is that there is only charge on the surface. Ah I see you used the delta function never mind.


I presume ##\theta## refers to the polar angle. ##\cos \theta## is even about the ## z-axis##. If you go ##\theta## clockwise from the z-axis and ##\theta## counterclockwise from the z-axis , draw the vectors, you will see the components in the xy-plane cancel out.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top