From dirac, if A=B, then [itex] \frac{A}{x}=\frac{B}{x}+c\delta(x)[/itex] (1) How this formula is derived?(adsbygoogle = window.adsbygoogle || []).push({});

Since [itex]\frac{dlnx}{dx} = \frac{1}{x}-i\pi\delta(x)[/itex]

We can get [itex]\frac{A}{x} = A\frac{dlnx}{dx}+Ai\pi\delta(x)[/itex]

[itex]\frac{B}{x} = B\frac{dlnx}{dx}+Bi\pi\delta(x)[/itex]

So if A=B, [itex] \frac{A}{x}=\frac{B}{x}.[/itex]

Another argument is if we integrate the equation (1) from -a to a, a->[itex]\infty[/itex] and assume in a small region [itex][-\varepsilon, \varepsilon ][/itex], [itex]\int_{-\varepsilon}^{\varepsilon}\frac{1}{x}dx=0,[/itex] so we can get [itex] \int_{-a}^{a}\frac{1}{x}dx=0, but \int_{-a}^{a}c\delta(x)dx=c,[/itex] so the left side of equation (1) doesn't equal to the right side. Please correct me if I am wrong!

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Dirac delta function in reciprocal function

Loading...

Similar Threads - Dirac delta function | Date |
---|---|

I Lebesgue Integral of Dirac Delta "function" | Nov 17, 2017 |

Dirac-delta function in spherical polar coordinates | Oct 7, 2017 |

I Understanding the Dirac Delta function | May 28, 2017 |

I Delta function in 2D | Jan 27, 2017 |

**Physics Forums - The Fusion of Science and Community**