Dirac equation in a central field (Schiff)

Click For Summary
SUMMARY

The discussion focuses on resolving an issue with equation (53.12) from "Quantum Mechanics" by Schiff, specifically regarding the Dirac equation in a central field. The key equation involves manipulating the terms of the form $(\vec{\sigma}' \cdot \vec{L})^2$ and $(\vec{L} + \frac{1}{2} \hbar \vec{\sigma}')^2$. The participant successfully identifies that the missing factor of 2 on the right-hand side arises from the commutation relations of the Pauli matrices, leading to the correct equality. This highlights the importance of understanding operator algebra in quantum mechanics.

PREREQUISITES
  • Understanding of the Dirac equation and its implications in quantum mechanics.
  • Familiarity with Pauli matrices and their properties.
  • Knowledge of angular momentum operators in quantum mechanics.
  • Ability to manipulate matrix equations and operator algebra.
NEXT STEPS
  • Study the properties of Pauli matrices in detail, focusing on their commutation relations.
  • Explore the implications of the Dirac equation in various physical contexts.
  • Learn about angular momentum operators and their role in quantum mechanics.
  • Investigate the mathematical techniques for manipulating operator equations in quantum mechanics.
USEFUL FOR

Quantum physicists, graduate students in physics, and anyone studying advanced quantum mechanics, particularly those dealing with the Dirac equation and angular momentum. This discussion is beneficial for those looking to deepen their understanding of operator algebra in quantum contexts.

DrClaude
Mentor
Messages
8,477
Reaction score
5,694
Not really a homework problem, but I think it fits better in this section.

Homework Statement


I'm having a problem with eq. (53.12) in the book Quantum Mechanics by Schiff. In the context of the Dirac equation, we have
$$
\hbar^2 k^2 = (\vec{\sigma}' \cdot \vec{L})^2 + 2\hbar (\vec{\sigma}' \cdot \vec{L}) + \hbar^2 = (\vec{L} + \frac{1}{2} \hbar \vec{\sigma}')^2 + \frac{1}{4} \hbar^2
$$
The first equality is fine, it is the second one that I can't reproduce. The point of the equation is to recover ##(\vec{L} + \frac{1}{2} \hbar \vec{\sigma}')^2 = (\vec{L} + \vec{S})^2 = \vec{J}^2##.

Homework Equations


$$
\vec{\sigma}' = ( \sigma_x', \sigma_y', \sigma_z')
$$
where the ##\sigma_i'## are ##4\times4## matrices related to the Pauli matrices ##\sigma_i## through
$$
\sigma_i' \equiv \begin{pmatrix} \sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix}
$$
##\vec{L}## is the orbital angular momentum (actually an operator, but that's not important in the present context).

The Attempt at a Solution


I start by looking at the square term on the LHS:
$$
\begin{array}{}
(\vec{\sigma}' \cdot \vec{L})^2 &= ( \sigma_x' L_x + \sigma_y' L_y + \sigma_z' L_z)^2 \\
&= (\sigma_x')^2 L_x^2 + \sigma_x' \sigma_y' L_x L_y + \sigma_x' \sigma_z' L_x L_z \\
&\quad + \sigma_y' \sigma_x' L_y L_x + (\sigma_y')^2 L_y^2 + \sigma_y' \sigma_z' L_y L_z \\
& \quad + \sigma_z' \sigma_x' L_z L_x + \sigma_z' \sigma_y' L_z L_y + (\sigma_z')^2 L_z^2 \\
&= L_x^2 \mathbf{1} + L_y^2 \mathbf{1} + L_z^2 \mathbf{1} = \vec{L}^2
\end{array}
$$
where I have used the properties of the Pauli matrices, namely ##\sigma_i^2 = \mathbf{1}##, with ##\mathbf{1}## the identity matrix, and ##\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij}##.

Now, for the square term on the RHS:
$$
\begin{array}{}
(\vec{L} + \frac{1}{2} \hbar \vec{\sigma}')^2 &= \vec{L} \cdot \vec{L} + \frac{1}{2} \hbar \vec{L} \cdot \vec{\sigma}' + \frac{1}{2} \hbar \vec{\sigma}' \cdot \vec{L} + \frac{1}{4} \hbar^2 \vec{\sigma}' \cdot \vec{\sigma}' \\
&= \vec{L}^2 + \hbar \vec{\sigma}' \cdot \vec{L} + \frac{1}{4} \hbar^2 (\sigma_x^2 + \sigma_y^2 + \sigma_z^2) \\
&= \vec{L}^2 + \hbar \vec{\sigma}' \cdot \vec{L} + \frac{3}{4} \hbar^2
\end{array}
$$

Putting all this together, I can rewrite the original equality as
$$
\vec{L}^2 + 2\hbar (\vec{\sigma}' \cdot \vec{L}) + \hbar^2 = \vec{L}^2 + \hbar (\vec{\sigma}' \cdot \vec{L}) + \hbar^2
$$
There is a factor 2 missing in the RHS that I can't find.
 
Physics news on Phys.org
Consider $$ \sigma_x' \sigma_y' L_x L_y + \sigma_y' \sigma_x' L_y L_x $$ Does this reduce to zero or something else?
 
TSny said:
Consider $$ \sigma_x' \sigma_y' L_x L_y + \sigma_y' \sigma_x' L_y L_x $$ Does this reduce to zero or something else?
I was so concentrated on the ##\sigma'## that I only saw ##\sigma_x' \sigma_y' + \sigma_y' \sigma_x' = 0##. But of course
$$
\begin{array}{}
\sigma_x' \sigma_y' L_x L_y + \sigma_y' \sigma_x' L_y L_x &= i \sigma_z' L_x L_y - i \sigma_z' L_y L_x \\
&= i \sigma_z' (L_x L_y - L_y L_x) \\
&= i \sigma_z' (i \hbar L_z) =-\hbar \sigma_z' L_z
\end{array}
$$
and so on, such that
\begin{array}{}
(\vec{\sigma}' \cdot \vec{L})^2 &= ( \sigma_x' L_x + \sigma_y' L_y + \sigma_z' L_z)^2 \\
&= (\sigma_x')^2 L_x^2 + \sigma_x' \sigma_y' L_x L_y + \sigma_x' \sigma_z' L_x L_z \\
&\quad + \sigma_y' \sigma_x' L_y L_x + (\sigma_y')^2 L_y^2 + \sigma_y' \sigma_z' L_y L_z \\
& \quad + \sigma_z' \sigma_x' L_z L_x + \sigma_z' \sigma_y' L_z L_y + (\sigma_z')^2 L_z^2 \\
&= (L_x^2 + L_y^2 + L_z^2) \mathbf{1} - \hbar ( \sigma_x' L_x + \sigma_y' L_y + \sigma_z' L_z)\\
&= \vec{L}^2 - \hbar ( \vec{\sigma}' \cdot \vec{L}),
\end{array}
leading to the correct equality.

Thanks a lot for pointing me in the right direction.
 
OK. Good.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
7
Views
3K