A Dirac's derivation of the action/Lagrangian for a free particle

Click For Summary
Dirac's derivation of the action for a free particle leads to the Lagrangian expressed as L = -m√(1 - v²), which is confirmed by its relation to the spatial components of the 4-momentum. He emphasizes the necessity of the coefficient -m by referencing special relativity, indicating that the Lagrangian's form arises specifically in this context. The discussion highlights that the assumption of flat spacetime is crucial for this derivation, as it aligns with the principles of special relativity. Some participants question the universality of the action's form, suggesting that alternative cases, like field theories or affine reparametrization, may not conform to this structure. Overall, the conversation revolves around the implications of Dirac's approach within the framework of special relativity and its limitations.
Kostik
Messages
274
Reaction score
32
TL;DR
The action for a free particle is ##I=-m\int{ds}##, hence the Lagrangian is ##L=-m(ds/dt)=-m/\gamma=-m\sqrt{1-v^2}##. Dirac infers this by checking that it gives the correct momentum ##p^k = \gamma mv^k## -- "in the case of special relativity". Why?
The action for a free particle is $$I=-m\int{ds} = \int \left(-m\frac{ds}{dt}\right) dt \quad\quad\quad(*)$$ hence the Lagrangian is $$L=-m\frac{ds}{dt}=-\frac{m}{\gamma}=-m\sqrt{1-v^2} .$$ Dirac ("General Theory of Relativity", p. 52) infers this by checking that it gives the correct spatial components of the 4-momentum: $$p^k = \frac{\partial L}{\partial \dot{x}^k} = \gamma m \frac{d x^k}{dt} .$$ But Dirac prefaces this by saying "We see the need [in the action] for the coefficient ##-m## by taking the case of special relativity, for which the Lagrangian would be the time derivative of ##(*)##."

Why does he say "by taking the case of special relativity"? Isn't it always true that $$\frac{\partial}{\partial t}\int{L}\,dt = L ?$$
 
Physics news on Phys.org
I can see that the assumption $$ds^2=\eta_{\mu\nu}dx^\mu dx^\nu = dt^2 - dx^2 - dy^2 - dz^2$$ assumes flat spacetime (special relativity). Therefore, I think Dirac is correct that his confirmation works in the case of special relativity. But I still don't see why he says "by taking the case of special relativity, for which the Lagrangian would be the time derivative of ##(∗)##."
 
Kostik said:
I can see that the assumption $$ds^2=\eta_{\mu\nu}dx^\mu dx^\nu = dt^2 - dx^2 - dy^2 - dz^2$$ assumes flat spacetime (special relativity). Therefore, I think Dirac is correct that his confirmation works in the case of special relativity. But I still don't see why he says "by taking the case of special relativity, for which the Lagrangian would be the time derivative of ##(∗)##."
As noted in the original post, Dirac's "General Theory of Relativity", p. 52.
 
Kostik said:
As noted in the original post, Dirac's "General Theory of Relativity", p. 52.
I don't think the comment is probably that deep. As you say that is generally the case that the action is of the form of ##A = \int L dt##. However, I don't think it's universal. Two cases that come to mind are maybe he was thinking of the field case where one has Lagrangian Densities like the Einstein Hilbert Action. Or alternatively in some cases one can choose an affine reparametrization of time.
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...

Similar threads

  • · Replies 3 ·
Replies
3
Views
634
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 48 ·
2
Replies
48
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
1K
Replies
1
Views
400
Replies
53
Views
3K
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K