Direct Proofs: Are They Just Introductions?

Click For Summary
Direct proofs are not merely introductory tools; they are foundational in mathematics and are used to establish significant theorems, including the fundamental theorems of calculus. Many important results in various fields rely on direct proofs to demonstrate relationships between propositions. The discussion highlights that while direct proofs may be introduced in early coursework, their application extends to advanced mathematical concepts. The fundamental theorem of calculus serves as a prime example of a critical theorem derived through direct proof methods. Understanding direct proofs is essential for grasping more complex mathematical theories.
Benn
Messages
34
Reaction score
0
Hey guys,

I'm in a proof class right now. We've covered direct proofs and moved on, but I'm still curious about them. Is there any important theorem that has even been derived using a direct proof (assume p to show q) or are they mainly just used to introduce proofs? In class, we only ever cover proofs such as "if n ##\equiv## 1 (mod 2), then n2 ##\equiv## 1 (mod 8)." and the like.

Sorry, I can't get the tex to work out... aha, just got it working, nevermind
 
Last edited:
Physics news on Phys.org
Benn said:
Is there any important theorem that has even been derived using a direct proof (assume p to show q) or are they mainly just used to introduce proofs?

Plenty of important theorems are proved using methods of direct proof. I presume that you are familiar with the fundamental theorems of calculus. The standard proofs of these results are done via direct proof. See here: http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Proof_of_the_first_part
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
874
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K